4.8 Article

Multiomic Analysis of Neurons with Divergent Projection Patterns Identifies Novel Regulators of Axon Pathfinding

期刊

ADVANCED SCIENCE
卷 9, 期 29, 页码 -

出版社

WILEY
DOI: 10.1002/advs.202200615

关键词

axon guidance; axon midline decisions; chromatin binding; integrins; Lhx; Nrp2; Pou4f; retinal ganglion cells; RGCs; transcriptional regulation; Zic; gamma-synuclein

资金

  1. Generalitat Valenciana [PROMETEO/2020/007]
  2. National Grant Research Program [PID2019-110535GB-I00]
  3. Ramon Areces Foundation [20191956]
  4. European Research Council [ERC-282329]
  5. FPI fellowship from the National Grant Research Program
  6. LaCaixa Foundation Junior Leader fellowship [LCF/BQ/PI18/11630005]
  7. MICINN [PID2020-118169RB-100]
  8. ERDF
  9. Human Frontiers Science Program Organization (HFSPO) [RGP0039/2017]
  10. Severo Ochoa Program for Centers of Excellence in RD [SEV-2017-0723]

向作者/读者索取更多资源

This study compares the transcriptome and chromatin occupancy profiles of two neuronal subpopulations to identify novel regulators of axon guidance and reveals the regulatory logic behind the selection of axonal trajectories.
Axon pathfinding is a key step in neural circuits formation. However, the transcriptional mechanisms regulating its progression remain poorly understood. The binary decision of crossing or avoiding the midline taken by some neuronal axons during development represents a robust model to investigate the mechanisms that control the selection of axonal trajectories. Here, to identify novel regulators of axon guidance, this work compares the transcriptome and chromatin occupancy profiles of two neuronal subpopulations, ipsilateral (iRGC) and contralateral retinal ganglion cells (cRGC), with similar functions but divergent axon trajectories. These analyses retrieved a number of genes encoding for proteins not previously implicated in axon pathfinding. In vivo functional experiments confirm the implication of some of these candidates in axonal navigation. Among the candidate genes, gamma-synuclein is identified as essential for inducing midline crossing. Footprint and luciferase assays demonstrate that this small-sized protein is regulated by the transcription factor (TF) Pou4f1 in cRGCs. It is also shown that Lhx2/9 are specifically expressed in iRGCs and control a program that partially overlaps with that regulated by Zic2, previously described as essential for iRGC specification. Overall, the analyses identify dozens of new molecules potentially involved in axon guidance and reveal the regulatory logic behind the selection of axonal trajectories.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据