4.7 Article

Thermally Stable Magneto-Plasmonic Nanoparticles for SERS with Tunable Plasmon Resonance

期刊

NANOMATERIALS
卷 12, 期 16, 页码 -

出版社

MDPI
DOI: 10.3390/nano12162860

关键词

SERS; magneto-plasmonic nanostructures; magnetite; silver nanoparticles

资金

  1. European Social Fund [09.3.3-LMT-K-712-190142]
  2. Research Council of Lithuania (LMTLT)

向作者/读者索取更多资源

In this study, composite magneto-plasmonic nanoparticles (Fe3O4@AgNPs) were successfully synthesized and showed superior performance in terms of signal intensity and reproducibility in SERS measurements. The average density of silver nanoparticles and the plasmonic resonance frequency of Fe3O4@AgNPs could be controlled by adjusting the initial volumes of colloid solutions.
Bifunctional magneto-plasmonic nanoparticles that exhibit synergistically magnetic and plasmonic properties are advanced substrates for surface-enhanced Raman spectroscopy (SERS) because of their excellent controllability and improved detection potentiality. In this study, composite magneto-plasmonic nanoparticles (Fe3O4@AgNPs) were formed by mixing colloid solutions of 50 nm-sized magnetite nanoparticles with 13 nm-sized silver nanoparticles. After drying of the layer of composite Fe3O4@AgNPs under a strong magnetic field, they outperformed the conventional silver nanoparticles during SERS measurements in terms of signal intensity, spot-to-spot, and sample-to-sample reproducibility. The SERS enhancement factor of Fe3O4@AgNP-adsorbed 4-mercaptobenzoic acid (4-MBA) was estimated to be 3.1 x 10(7) for a 633 nm excitation. In addition, we show that simply by changing the initial volumes of the colloid solutions, it is possible to control the average density of the silver nanoparticles, which are attached to a single magnetite nanoparticle. UV-Vis and SERS data revealed a possibility to tune the plasmonic resonance frequency of Fe3O4@AgNPs. In this research, the plasmon resonance maximum varied from 470 to 800 nm, suggesting the possibility to choose the most suitable nanoparticle composition for the particular SERS experiment design. We emphasize the increased thermal stability of composite nanoparticles under 532 and 442 nm laser light irradiation compared to that of bare Fe3O4 nanoparticles. The Fe3O4@AgNPs were further characterized by XRD, TEM, and magnetization measurements.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据