4.7 Review

Mechanical Properties and Deformation Behavior of Superhard Lightweight Nanocrystalline Ceramics

期刊

NANOMATERIALS
卷 12, 期 18, 页码 -

出版社

MDPI
DOI: 10.3390/nano12183228

关键词

boron carbide; silicon carbide; interface; grain boundary sliding; amorphization

资金

  1. National Natural Science Foundation of China [52150610487, 51850410501]

向作者/读者索取更多资源

Lightweight polycrystalline ceramics have promising physical, chemical, and mechanical properties. However, their coarse-grained structures make them brittle and low in fracture toughness. It has been discovered that nanocrystalline ceramics with soft interface phases or disordered structures can significantly enhance their mechanical properties.
Lightweight polycrystalline ceramics possess promising physical, chemical, and mechanical properties, which can be used in a variety of important structural applications. However, these ceramics with coarse-grained structures are brittle and have low fracture toughness due to their rigid covalent bonding (more often consisting of high-angle grain boundaries) that can cause catastrophic failures. Nanocrystalline ceramics with soft interface phases or disordered structures at grain boundaries have been demonstrated to enhance their mechanical properties, such as strength, toughness, and ductility, significantly. In this review, the underlying deformation mechanisms that are contributing to the enhanced mechanical properties of superhard nanocrystalline ceramics, particularly in boron carbide and silicon carbide, are elucidated using state-of-the-art transmission electron microscopy and first-principles simulations. The observations on these superhard ceramics revealed that grain boundary sliding induced amorphization can effectively accommodate local deformation, leading to an outstanding combination of mechanical properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据