4.7 Article

Mesoscale Modeling of Phase Separation Controlled by Hydrosilylation in Polyhydromethylsiloxane (PHMS)-Containing Blends

期刊

NANOMATERIALS
卷 12, 期 18, 页码 -

出版社

MDPI
DOI: 10.3390/nano12183117

关键词

polymer-derived ceramics; phase separation; dissipative particle dynamics; hydrosilylation reaction

资金

  1. National Science Foundation EPSCoR Program [OIA-1655740]
  2. National Science Foundation [1950557]
  3. Direct For Mathematical & Physical Scien
  4. Division Of Materials Research [1950557] Funding Source: National Science Foundation

向作者/读者索取更多资源

Controlling the morphology of polysiloxane blends during the hydrosilylation reaction allows for the fabrication of polymer-derived ceramics for various applications. Through a dissipative particle dynamics (DPD) approach, we capture the phase separation in binary and ternary polymer blends undergoing hydrosilylation. We demonstrate that the morphology of the sacrificial domains in the nanostructured polymer network can be tailored by adjusting the composition and properties of the sacrificial component.
Controlling morphology of polysiloxane blends crosslinked by the hydrosilylation reaction followed by pyrolysis constitutes a robust strategy to fabricate polymer-derived ceramics (PDCs) for a number of applications, from water purification to hydrogen storage. Herein, we introduce a dissipative particle dynamics (DPD) approach that captures the phase separation in binary and ternary polymer blends undergoing hydrosilylation. Linear polyhydromethylsiloxane (PHMS) chains are chosen as preceramic precursors and linear vinyl-terminated polydimethylsiloxane (v-PDMS) chains constitute the reactive sacrificial component. Hydrosilylation of carbon-carbon unsaturated double bonds results in the formation of carbon-silicon bonds and is widely utilized in the synthesis of organosilicons. We characterize the dynamics of binary PHMS/v-PDMS blends undergoing hydrosilylation and ternary blends in which a fraction of the reactive sacrificial component (v-PDMS) is replaced with the non-reactive sacrificial component (methyl-terminated PDMS (m-PDMS), polyacrylonitrile (PAN), or poly(methyl methacrylate) (PMMA)). Our results clearly demonstrate that the morphology of the sacrificial domains in the nanostructured polymer network formed can be tailored by tunning the composition, chemical nature, and the degree of polymerization of the sacrificial component. We also show that the addition of a non-reactive sacrificial component introduces facile means to control the self-assembly and morphology of these nanostructured materials by varying the fraction, degree of polymerization, or the chemical nature of this component.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据