4.5 Article

Porosity, Mineralogy, Strength, and Reducibility of Sinter Analogues from the Fe2O3 (Fe3O4)-CaO-SiO2 (FCS) Ternary System

期刊

MINERALS
卷 12, 期 10, 页码 -

出版社

MDPI
DOI: 10.3390/min12101253

关键词

iron ore sinter; porosity; reducibility; mineralogy; FCS; strength

资金

  1. Swinburne University of Technology
  2. Commonwealth Scientific and Industrial Research Organisation (CSIRO)
  3. CSIRO

向作者/读者索取更多资源

Porosity plays a crucial role in determining the reducibility of sinter materials, and the presence of SFCA bonding phases is not necessary to achieve high reducibility.
The presence of Ca-ferrite and silico-ferrite-of-calcium-and-aluminium (SFCA) bonding phases is thought to be crucial to maintain sinter quality due to their high reducibility and strength levels. However, new evidence suggests that porosity might be an equally important factor controlling reducibility, in addition to mineralogy. This work aims to fundamentally understand the development of porosity in simple sinter analogues from the Fe2O3-(Fe3O4)-CaO-SiO2 (FCS) ternary system (with no SFCA), and to connect results back to overall sinter mineralogy, strength, and reducibility properties. Laboratory-scale experiments were conducted to simulate the sintering process by firing tablets of magnetite, hematite, lime and silica mixtures under tightly controlled temperature, holding time and atmosphere conditions. Mineralogy of the fired samples was observed using microscopy techniques, porosity was measured by Mercury Intrusion Porosimetry (MIP), strength was determined using laboratory-scale tumble index equipment and reducibility was measured by the weight loss obtained after reaction of the tablets in a reducing atmosphere of CO/N-2. The results confirmed that reducibility is strongly influenced by porosity, and highly reducible sinters can be produced without forming SFCA-like phases. Magnetite-containing samples had similar reducibility to hematite-containing samples, suggesting that magnetite-based sinters could potentially be used in the blast furnace.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据