4.5 Article

Weighted Full-Focus Defect Detection and Imaging Method Based on Threshold Fusion for Phase Coherence Factor

期刊

JOURNAL OF SENSORS
卷 2022, 期 -, 页码 -

出版社

HINDAWI LTD
DOI: 10.1155/2022/6886025

关键词

-

资金

  1. Basic Ability Enhancement Program for Young and Middle-aged Teachers of Guangxi [2020KY06035]
  2. Scientific Research Foundation
  3. Guilin University of Technology [GUTQDJJ2018091]

向作者/读者索取更多资源

The paper proposes a phase coherence factor (TF-PCF) weighted full-focus imaging method based on threshold fusion to solve the problem of low imaging resolution and interference in quantitative analysis of defect size. The algorithm effectively eliminates noise information and reduces quantization errors, improving the reliability of defect size analysis.
Total focus (TFM) ultrasonic inspection imaging only uses the amplitude of defect data for delayed stack imaging (DAS), ignoring the phase information in the echo signal, which easily leads to low imaging resolution and interferes with subsequent quantitative analysis of defect size. To solve these problems, this paper proposes a phase coherence factor (TF-PCF) weighted full-focus imaging method based on threshold fusion: by combining the image sound intensity matrix with mathematical statistics, a reasonable threshold is set to screen out the effective pixels, and the parameter selection rules of the PCI algorithm model are redefined. The simulation and experimental results show that the TF-PCF imaging algorithm can effectively eliminate the noise information in the imaging area, including the artifacts near the defects that are difficult to be processed by PCI. Compared with PCI, TF-PCF has higher ability to quantify defect size. When using p-wave to detect large objects with a large number of defects and complex location distribution, the lateral size quantization error of the TF-PCF imaging algorithm is reduced by 8.5%. When sampling shear wave imaging to detect defects with tilted wedges, the lateral and longitudinal size quantization errors of defects are reduced by 10% and 20%, respectively. The reliability of defect size quantitative analysis is improved. Under the same test conditions, the complexity of TF-PCF model is far less than that of PCI model, which greatly improves the practicability of the algorithm model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据