4.7 Article

Impact of transition metal incorporation on the photocatalytic CO2 reduction activity of polymeric carbon nitride

期刊

JOURNAL OF CO2 UTILIZATION
卷 64, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jcou.2022.102162

关键词

Carbon nitride; Transition metal; Doping; Heterojunction; Photocatalytic CO2 reduction

资金

  1. Liaoning Revitalization Talents Program [XLYC2008032]

向作者/读者索取更多资源

The incorporation of transition metals in polymeric carbon nitride is an effective strategy to enhance its photocatalytic CO2 reduction activity. By controlling the content of metal-organic frameworks during pyrolysis, the photocatalytic activity of metal-modified carbon nitride is optimized. The optimized materials show significantly enhanced CO evolution rates, which can be attributed to various factors such as increased specific surface area and visible light absorption.
Incorporation of transition metals in polymeric carbon nitride (CN) is an effective strategy to enhance its pho-tocatalytic CO2 reduction activity, however, the difference of activity enhancement by incorporating different metals is not well understood. Herein, CN is modified with different transition metals by pyrolyzing the mixtures of urea and metal-organic frameworks (MOFs) to obtain MCN (M = Cu, Co, Ti or Fe). For each given type of metal-modified CN, the photocatalytic CO(2 )reduction activity is optimized by controlling the content of MOF precursor during pyrolysis. The optimized MCN delivers significantly enhanced CO evolution rate than pure CN, in the order of CN (83 mu mol g(-1) h(-1)) < CuCN (246 mu mol g(-1) h(-1)) < CoCN (326 mu mol g(-1) h(-1)) < TiCN (454 mu mol g(-1) h(-1)) < FeCN (490 mu mol g(-1) h(-1)). It is revealed that for CuCN and CoCN, Cu and Co are doped in CN. In contrast, for TiCN and FeCN, Ti and Fe exist as TiO2 and Fe2O3 forming Z-scheme heterojunctions with CN. The progressively improved photocatalytic activity corresponds to the increased specific surface area, CO(2 )adsorption capacity, visible light absorption as well as charge separation and transfer efficiency. Furthermore, we design and prepare bimetal incorporated CN through combining metal doping with heterojunction construction strategies, i. e., Cu doped CN/TiO2 and Co doped CN/Fe2O3, which exhibit further enhanced CO2 photoreduction perfor-mance with CO evolution rates of 613 and 718 mu mol g(-1) h(-1,) respectively. This work provides insight into the design and preparation of highly efficient CN-based photocatalytic materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据