4.6 Article

Dynamic effects of cholinergic blockade upon cerebral blood flow autoregulation in healthy adults

期刊

FRONTIERS IN PHYSIOLOGY
卷 13, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fphys.2022.1015544

关键词

cerebral blood flow regulation; cerebral autoregulation; dynamic vasomotor reactivity; autonomic control; cholinergic mechanism

资金

  1. NIH/NIA
  2. NIH/NIBIB [R01-AG058162]
  3. NIH [P41-EB001978]
  4. [R01-HL093113]

向作者/读者索取更多资源

This study investigates the dynamic effects of cholinergic blockade on cerebral flow autoregulation in response to changes in blood pressure and CO2 concentration in healthy adults. The results demonstrate that the changes in cholinergic mechanism result in resonant peaks at specific frequencies, as reflected by the changes in the kernel functions.
Background: Cerebral flow autoregulation (CFA) is a homeostatic mechanism critical for survival. The autonomic nervous system (ANS) plays a key role in maintaining proper CFA function. More quantitative studies of how the ANS influences CFA are desirable. Objective: To discover and quantify the dynamic effects of cholinergic blockade upon CFA in response to changes of arterial blood pressure and blood CO2 tension in healthy adults. Methods: We analyzed time-series data of spontaneous beat-to-beat mean arterial blood pressure (ABP) and cerebral blood flow velocity in the middle cerebral arteries (CFV), as well as breath-to-breath end-tidal CO2 (CO2), collected in 9 adults before and after cholinergic blockade, in order to obtain subject-specific predictive input-output models of the dynamic effects of changes in ABP and CO2 (inputs) upon CFV (output). These models are defined in convolutional form using kernel functions (or, equivalently, Transfer Functions in the frequency domain) that are estimated via the robust method of Laguerre expansions. Results: Cholinergic blockade caused statistically significant changes in the obtained kernel estimates (and the corresponding Transfer Functions) that define the linear dynamics of the ABP-to-CFV and CO2-to-CFV causal relations. The kernel changes due to cholinergic blockade reflect the effects of the cholinergic mechanism and exhibited, in the frequency domain, resonant peaks at 0.22 Hz and 0.06 Hz for the ABP-to-CFV and CO2-to-CFV dynamics, respectively. Conclusion: Quantitative estimates of the dynamics of the cholinergic component in CFA are found as average changes of the ABP-to-CFV and CO2-to-CFV kernels, and corresponding Transfer Functions, before and after cholinergic blockade.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据