4.7 Article

Voltage dependence of the cannabinoid CB1 receptor

期刊

FRONTIERS IN PHARMACOLOGY
卷 13, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fphar.2022.1022275

关键词

G protein couple receptors; Xenopas oocytes; voltage dependence; cannabinoid (CB) receptor 1; cannabinoids

资金

  1. Open University of Israel

向作者/读者索取更多资源

Cannabinoids produce their effects by binding to CB1 and CB2 receptors, and recent studies have shown that membrane potential may modulate the activity of the CB1 receptor. The voltage dependence appears to be agonist-specific, which could contribute to our understanding of the physiological functions mediated by the endocannabinoid system.
Cannabinoids produce their characteristic effects mainly by binding to two types of G-protein coupled receptors (GPCRs), the CB1 and CB2 cannabinoid receptors. The CB1 receptor is the main cannabinoid receptor in the central nervous system, and it participates in many brain functions. Recent studies showed that membrane potential may serve as a novel modulatory modality of many GPCRs. Here, we used Xenopus oocytes as an expression system to examine whether membrane potential modulates the activity of the CB1 receptor. We found that the potencies of the endocannabinoid 2-AG and the phytocannabinoid THC in activating the receptor are voltage dependent; depolarization enhanced the potency of these agonists and decreased their dissociation from the receptor. This voltage dependence appears to be agonist dependent as the potency of the endocannabinoid anandamide (AEA) was voltage independent. The finding of this agonist-specific modulatory factor for the CB1 receptor may contribute to our future understanding of various physiological functions mediated by the endocannabinoid system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据