4.5 Article

Dextran and Its Derivatives: Biopolymer Additives for the Modulation of Vaterite CaCO3 Crystal Morphology and Adhesion to Cells

期刊

ADVANCED MATERIALS INTERFACES
卷 9, 期 31, 页码 -

出版社

WILEY
DOI: 10.1002/admi.202201196

关键词

biomineralization; co-synthesis; drug delivery; mesoporous; recrystallization

资金

  1. Marie Skodowska-Curie Ph.D. Fellowship programme, EC [801604-DTA3-H2020-MSCA-COFUND-2017]
  2. Nottingham Trent University
  3. Staedtler Foundation
  4. Projekt DEAL

向作者/读者索取更多资源

Nowadays, there is a growing demand for the development of novel drug delivery systems using materials that are already approved for biomedical use. In this study, hybrid organic-inorganic mesoporous crystals were fabricated in physiologically relevant conditions through co-synthesis of vaterite CaCO3 in the presence of dextran (DEX) or its functional derivatives. The effects of DEX molecular weight and chemical structure on the morphology, porosity, and stability of the hybrids were investigated. The results provide important insights into the crystallization of DEX/vaterite hybrids and their potential as functional delivery carriers for biomedical and other applications.
Nowadays, a great demand for the development of novel drug delivery systems with high potential for bench-to-market transition attracts scientific attention toward materials that are already approved for biomedical use. Here, controlled fabrication of hybrid organic inorganic mesoporous crystals is realized in physiologically relevant conditions by co-synthesis of vaterite CaCO3 in the presence of dextran (DEX) or its functional derivatives. The effects of DEX molecular weight and chemical structure on morphology, porosity, and stability of the hybrids are investigated. Molecular weight of DEX does not affect the crystal growth but leads to the partial blocking of crystal pores. Co-synthesis of DEX functionalized with either carboxymethyl (CM) or diethylaminoethyl (DEAE) groups drastically increased crystal porosity without influencing crystal size. pH-dependent vaterite-to-calcite recrystallization is significantly suppressed by inclusion of carboxymethyl-dextran (CM-DEX), making vaterite crystals stable in acidic medium, whereas the incorporation of diethylaminoethyl-dextran (DEAE-DEX) has no effect. The hybrids prepared with charged DEX derivatives possess stronger adhesion to normal human dermal fibroblasts: three times higher crystal adherence compared to pristine crystals. These results provide fundamental physical-chemical insights into the crystallization of DEX/vaterite hybrids and are discussed in view of the potential of these functional delivery carriers for biomedical and other applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据