4.6 Article

The Effects of Five-Year Biosolid Application on the Diversity and Community of Soil Arthropods

期刊

SUSTAINABILITY
卷 14, 期 20, 页码 -

出版社

MDPI
DOI: 10.3390/su142013359

关键词

biosolids; soil arthropod; enzyme activity; agricultural land

资金

  1. National Nature Science Foundation of China [22176215]
  2. Modern Agricultural Industry Technology System [CARS-23-B18]
  3. National Special Fund for Basic Research [1610132021015]

向作者/读者索取更多资源

Land application of biosolids does not have detrimental effects on soil arthropods or microbial-related soil function, but it does influence the abundance and diversity of arthropods.
Land application of biosolids is a beneficial form of management, although heavy metal contamination is a major concern. Biosolid application can shape the abundance, species richness, and community structure of arthropods, which are important regulators of soil processes. We investigated the effect of the five-year (2012-2017) application of domestic biosolids at 0, 15, 30, and 45 ton ha(-1) on the soil properties, enzyme activity, heavy metal concentrations, abundance, and diversity of soil arthropods in degraded sandy soil. The results showed that the application of a high amount of biosolids resulted in an increase in soil organic carbon of 2.6 times and in the water content of 2.8 times compared with CK (no biosolids). The total metal concentrations of Cr, Ni, Cu, Zn, Cd, and Pb increased by 6.6%, 3.2%, 6.6%, 7.7%, 13.3%, and 22.5%, respectively, compared with CK in soil (p > 0.05). The activities of seven enzymes, which mainly participate in carbon (C), nitrogen (N), phosphate (P), and sulfur (S) transformation, increased by 1.53%similar to 122.7%, indicating that the soil function did not change under biosolid application. The number of individual arthropods collected from a square meter of soil changed from 0 to 2560. The total abundance of arthropods increased from 1.2 to 4 times under biosolid application (p < 0.05), but biosolid application had no effects on simple measures of richness and diversity (Shannon-Weaver index). Multivariate ordination techniques showed a significant shift of the arthropod community structure under biosolid application due to differing responses of several taxa to the biosolids. Redundancy analysis highlighted the influential role of soil chemical properties (soil organic C, total N, water content, microbial biomass, and pH) and cadmium in shaping the soil arthropod structure. These results suggest that long-term biosolid application with limited heavy metal concentrations does not have detrimental effects on soil arthropods or microbial-related soil function.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据