4.6 Article

Temperature Stable Piezoelectric Imprint of Epitaxial Grown PZT for Zero-Bias Driving MEMS Actuator Operation

期刊

MICROMACHINES
卷 13, 期 10, 页码 -

出版社

MDPI
DOI: 10.3390/mi13101705

关键词

MEMS; speaker; PZT; imprint; bipolar driving

向作者/读者索取更多资源

This study investigates the potential of using piezoelectric layers with an imprint for stable bipolar operation, and the findings demonstrate that a piezoelectric layer with a strong imprint makes it possible to operate with low DC or even zero DC bias, while still providing strong piezoelectric response and linear behavior.
In piezoelectric transducer applications, it is common to use a unipolar operation signal to avoid switching of the polarisation and the resulting nonlinearities of micro-electromechanical systems. However, semi-bipolar or bipolar operation signals have the advantages of less leakage current, lower power consumption and no additional need of a DC-DC converter for low AC driving voltages. This study investigates the potential of using piezoelectric layers with an imprint for stable bipolar operation on the basis of epitaxially grown lead zirconate titanate cantilevers with electrodes made of a metal and metal oxide stack. Due to the manufacturing process, the samples exhibit high crystallinity, rectangular shaped hysteresis and a high piezoelectric response. Furthermore, the piezoelectric layers have an imprint, indicating a strong built-in field, which shifts the polarisation versus electric field hysteresis. To obtain the stability of the imprint, laser doppler vibrometry and switching current measurements were performed at different temperatures, yielding a stable imprinted electric field of -1.83 MV/m up to at least 100 degrees C. The deflection of the cantilevers was measured with a constant AC driving voltage while varying the DC bias voltage to examine the influence of the imprint under operation, revealing that the same high deflection and low nonlinearities, quantified by the total harmonic distortion, can be maintained down to low bias voltages compared to unipolar operation. These findings demonstrate that a piezoelectric layer with a strong imprint makes it possible to operate with low DC or even zero DC bias, while still providing strong piezoelectric response and linear behaviour.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据