4.3 Article

Effects of water on gas flow in quartz and kerogen nano-slits in shale gas formations

期刊

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jngse.2022.104770

关键词

Gas-water flow; Quartz slit; Kerogen slit; Interface region; Molecular dynamic simulation

资金

  1. National Natural Science Foundation of China [52004317, 42090024]
  2. Natural Science Foundation of Shandong Province of China [ZR2020ME091]
  3. Fundamental Research Funds for the Cornell University [20CX06016A]

向作者/读者索取更多资源

Understanding the behavior of gas-water two-phase flow in shale gas formations is crucial for reservoir simulation and production optimization. Molecular simulation shows that water can significantly affect gas flow velocities in different types of nano-slits in shale reservoirs due to its interaction with the walls and gas molecules.
Understanding the gas-water two-phase flow behavior in a shale gas formation is important for reservoir simulation and production optimization. A molecular simulation study of gas-water flow in quartz and kerogen nano-slits (2-6 nm) at shale reservoir conditions (temperature: 313.15-393.15 K, pressure: 20-60 MPa) is re-ported in this work. The simulation results show that the existence of water in the hydrophilic quartz slits will form water films on the slit walls; while the presence of water in the hydrophobic kerogen slits will form water clusters in the central of the gas phase at low water saturation and a water layer at high water saturation. In both wetting conditions, water will take flow space and reduce gas flow path. However, water affects gas flow velocities in the two wetting types nano-slits in different ways due to the two opposite occupancies in the slits. The momentum transfer between water and methane molecules in the gas-water interface region plays an important role in the gas-water two-phase flow. The gas flow is more readily affected by water content in the quartz slit with an aperture greater than 2 nm. When the slit aperture is reduced to 2 nm, it is difficult to form a continuous gas or water phase, and the existence of water in both types of slits will reduce the velocity of methane. Increasing the temperature will accelerate the flow of methane and water because hydrogen bonds between water molecules as well as hydrogen bonds between water molecules and the walls are reduced. High pressure promotes the mixing of the methane and water molecules, resulting in the gas velocity decreasing in both quartz and kerogen slits. The flow mechanism of methane and water in nano-slits provide insights into theoretical models for shale gas production.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据