4.6 Article

Design of ultranarrow-bandgap acceptors for efficient organic photovoltaic cells and highly sensitive organic photodetectors

期刊

JOURNAL OF ENERGY CHEMISTRY
卷 72, 期 -, 页码 388-394

出版社

ELSEVIER
DOI: 10.1016/j.jechem.2022.05.038

关键词

Ultranarrow-bandgap acceptors; Asymmetric design strategies; Molecular electrostatic potentials; Exciton dissociation; Non-radiative energy loss

资金

  1. National Natural Science Foundation of China (NSFC) [21835006, 22075301, 22122905]
  2. Youth Innovation Promotion Association CAS [2018043]
  3. Beijing National Laboratory for Molecular Sciences [BNLMS-CXXM-201903]
  4. Chinese Academy of Sciences [XDPB13-3]

向作者/读者索取更多资源

The fabrication of multifunctional electronic devices based on the intriguing natures of organic semiconductors is crucial for organic electronics. Ultranarrow-bandgap materials are in urgent demand for fabricating high-performance organic photovoltaic (OPV) cells and highly sensitive near-infrared organic photodetectors (OPDs). By combining alkoxy modification and an asymmetric strategy, three narrowbandgap electronic acceptors (BTP-4F, DO-4F, and QO-4F) were synthesized with finely tuned molecular electrostatic potential (ESP) distributions. Through the careful modulation of electronic configurations, the optical absorption onsets of DO-4F and QO-4F exceeded 1 lm.
The fabrication of multifunctional electronic devices based on the intriguing natures of organic semiconductors is crucial for organic electronics. Ultranarrow-bandgap materials are in urgent demand for fabricating high-performance organic photovoltaic (OPV) cells and highly sensitive near-infrared organic photodetectors (OPDs). By combining alkoxy modification and an asymmetric strategy, three narrowbandgap electronic acceptors (BTP-4F, DO-4F, and QO-4F) were synthesized with finely tuned molecular electrostatic potential (ESP) distributions. Through the careful modulation of electronic configurations, the optical absorption onsets of DO-4F and QO-4F exceeded 1 lm. The experimental and theoretical results suggest that the small ESP of QO-4F is beneficial for achieving a low nonradiative voltage loss, while the large ESP of BTP-4F can help obtain high exciton dissociation efficiency. By contrast, the asymmetric acceptor DO-4F with a moderate ESP possesses balanced voltage loss and exciton dissociation, yielding the best power conversion efficiency of 13.6% in the OPV cells. OPDs were also fabricated based on the combination of PBDB-T:DO-4F, and the as-fabricated device outputs a high shot-noise-limited specific detectivity of 3.05 x 1013 Jones at 850 nm, which is a very good result for near-infrared OPDs. This work is anticipated to provide a rational way of designing high-performance ultranarrow-bandgap organic semiconductors by modulating the molecular ESP.(c) 2022 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据