4.7 Article

A histone deacetylase inhibitor enhances rice immunity by derepressing the expression of defense-related genes

期刊

FRONTIERS IN PLANT SCIENCE
卷 13, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fpls.2022.1041095

关键词

HDAC inhibitors; rice blast; histone acetylation; defense-related genes; rice

资金

  1. Opening Project of Hubei Engineering Research Center for Specialty Flowers Biological Breeding [2022ZD005]
  2. Natural Science Foundation of Jiangsu Province [BK20190535]

向作者/读者索取更多资源

This paper investigates the role of histone deacetylase inhibitors in rice disease resistance. It is found that sodium butyrate treatment significantly enhances rice blast resistance. The global histone acetylation is increased after treatment with the four inhibitors, but at different sites, suggesting different selectivity of these inhibitors. Transcriptomic analysis reveals that many defense-related genes are up-regulated by sodium butyrate treatment.
Histone deacetylase (HDAC) inhibitors (HDACis) have been widely used in plants to investigate the role of histone acetylation, particularly the function of HDACs, in the regulation of development and stress response. However, how histone acetylation is involved in rice (Oryza sativa L.) disease resistance has hardly been studied. In this paper, four HDACis including Sodium butyrate (NaBT), Suberoylanilide Hydroxamic Acid (SAHA), LBH-589 and Trichostatin A (TSA) were used to treat rice seedlings at different concentrations before inoculation of Magnaporthe oryzae. We found that only 10mM NaBT treatment can significantly enhanced rice blast resistance. However, treatment of the four HDACis all increased global histone acetylation but at different sites, suggesting that the inhibition selectivity of these HDACis is different. Notably, the global H3K9ac level was dramatically elevated after both NaBT and LBH589 treatment although LBH589 could not enhance rice blast resistance. This indicates that the HDACs they inhibit target different genes. In accordance with the phenotype, transcriptomic analysis showed that many defense-related genes were up-regulated by NaBT treatment. Up-regulation of the four genes bsr-d1, PR10B, OsNAC4, OsKS4 were confirmed by RT-qPCR. ChIP-qPCR results revealed that H3K9ac level on these genes was increased after NaBT treatment, suggesting that these defense-related genes were repressed by HDACs. In addition, by promoter motif analysis of the genes that induced by both NaBT treatment and rice blast infection, we found that the motifs bound by ERF and AHL transcription factors (TFs) were the most abundant, which demonstrates that ERF and AHL proteins may act as the candidate TFs that recruit HDACs to defense-related genes to repress their expression when plants are not infected by rice blast.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据