4.7 Article

Methylation level of potato gene OMT30376 regulates tuber anthocyanin transformations

期刊

FRONTIERS IN PLANT SCIENCE
卷 13, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fpls.2022.1021617

关键词

OMT30376 gene; methylation level; gene expression; anthocyanin transformation; potato

资金

  1. China Agriculture Research System of MOF and MARA [CARS-09-P07]
  2. Natural Science Foundation of Henan [202300410152]
  3. Training Plan for Young Backbone Teachers in the Colleges and Universities of Henan Province [2021GGJS049]
  4. Research Funding for Young Backbone Teachers of Henan University of Science and Technology [4026-13450008]

向作者/读者索取更多资源

The OMT30376 gene is involved in the transformation of anthocyanins in potato tubers, as revealed by transcriptome and metabolome analyses.
After anthocyanin synthesis, a variety of anthocyanin compounds are produced through further methylation, glycosylation, and acylation. However, the effect of the potato methylase gene on anthocyanin biosynthesis has not been reported. Red and purple mutation types appear in tubers of the potato cultivar 'Purple Viking' with chimeric skin phenotypes. In this study, transcriptome and anthocyanin metabolome analyses were performed on skin of Purple Viking tubers and associated mutants. According to the metabolome analysis, the transformation of delphinidin into malvidin-3-O-glucoside and petunidin 3-O-glucoside and that of cyanidin into rosinidin O-hexoside and peonidin-3-O-glucoside were hindered in red tubers. Expression of methyltransferase gene OMT30376 was significantly lower in red tubers than in purple ones, whereas the methylation level of OMT30376 was significantly higher in red tubers. In addition, red skin appeared in tubers from purple tuber plants treated with S-adenosylmethionine (SAM), indicating the difference between purple and red was caused by the methylation degree of the gene OMT30376. Thus, the results of the study suggest that the OMT30376 gene is involved in the transformation of anthocyanins in potato tubers. The results also provide an important reference to reveal the regulatory mechanisms of anthocyanin biosynthesis and transformation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据