4.7 Article

Characterization of complex photosynthetic pigment profiles in European deciduous tree leaves by sequential extraction and reversed-phase high-performance liquid chromatography

期刊

FRONTIERS IN PLANT SCIENCE
卷 13, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fpls.2022.957606

关键词

leaf pigments; chlorophyll derivatives; carotenoid derivatives; sequential extraction; untargeted liquid chromatography-optical detection

资金

  1. University of Zurich
  2. Swiss National Science Foundation
  3. University Research Priority Program on Global Change and Biodiversity [157778]

向作者/读者索取更多资源

A new method for simultaneous quantification of major photosynthetic pigments in plants and characterization of more pigment derivatives has been developed, with a wide working concentration range and low detection limit. This method allows for effective monitoring of leaf pigment dynamics.
Leaf pigments, including chlorophylls and carotenoids, are important biochemical indicators of plant photosynthesis and photoprotection. In this study, we developed, optimized, and validated a sequential extraction and liquid chromatography-diode array detection method allowing for the simultaneous quantification of the main photosynthetic pigments, including chlorophyll a, chlorophyll b, beta-carotene, lutein, neoxanthin, and the xanthophyll cycle (VAZ), as well as the characterization of plant pigment derivatives. Chromatographic separation was accomplished with the newest generation of core-shell columns revealing numerous pigment derivatives. The sequential extraction allowed for a better recovery of the main pigments (+25 % chlorophyll a, +30 % chlorophyll b, +42 % beta-carotene, and 61% xanthophylls), and the characterization of ca. 5.3 times more pigment derivatives (i.e., up to 62 chlorophyll and carotenoid derivatives including isomers) than with a single-step extraction. A broad working range of concentrations (300-2,000 ng.mL(-1)) was achieved for most pigments and their derivatives and the limit of detection was as low as a few nanograms per milliliter. The method also showed adequate trueness (RSD < 1%) and intermediate precision (RSD < 5%). The method was developed and validated with spinach leaves and their extracts. The method was successfully performed on leaf pigment extracts of European deciduous tree species. Within a case study using Fagus sylvatica L. leaves, pigment derivatives revealed a high within-individual tree variability throughout the growing season that could not be detected using the main photosynthetic pigments alone, eventually showing that the method allowed for the monitoring of pigment dynamics at unprecedented detail.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据