4.7 Article

Differential influence of cortex and stele components on root tip diameter in different types of tropical climbing plants

期刊

FRONTIERS IN PLANT SCIENCE
卷 13, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fpls.2022.961214

关键词

root tip diameter; anatomical trait; relationship; lianas; vines

向作者/读者索取更多资源

Root tip diameter is significantly positively correlated with cortex thickness and stele diameter in climbing plants. Cortex thickness is positively correlated with mean cortical cell diameter and number of cortical cell layers. Stele diameter is positively correlated with mean conduit diameter and number of conduits per stele, and negatively correlated with conduit density. Climbing plants have closer relationships between root diameter and cortex thickness and stele diameter compared to vines. Lianas have higher stele proportion and denser conduits, lower cortex proportion, and smaller conduit size than vines.
Climbing plants are an abundant and taxonomically diverse plant group that competes intensely with trees and thus substantially affects forest diversity and structure. The growth and physiology of climbing plants largely depend on their root tip structure and function. However, little is known regarding the mechanisms through which anatomical traits regulate root tip diameter in climbing plants. Therefore, our study sought to explore the relationships between root tip diameter and seven anatomical traits (e.g., cortex thickness and stele diameter) in three lianas and three vine species sampled from a tropical forest in Hainan. Root tip diameter was significantly positively correlated with cortex thickness (r = 0.94-0.99) and stele diameter (r = 0.72-0.94) within species, especially with cortex thickness. Cortex thickness was significantly positively correlated with mean cortical cell diameter in six species (r = 0.72-0.93), but was only correlated with the number of cortical cell layers in three species (r = 0.42-0.66). Stele diameter displayed significant positive correlations with mean conduit diameter (r = 0.58-0.88) and the number of conduits per stele (r = 0.50-0.66, except for Cyclea hypoglauca), and was negatively correlated with conduit density in all species (r = -0.65 to -0.77). The correlations between cortical cells and conduit traits and root tip diameter were similar to that with cortex thickness and stele diameter, respectively. Compared with vines, liana root tips showed closer relationships between root diameter and cortex thickness and stele diameter, and between cortex thickness and mean diameter of cortical cells. Moreover, the root tip of lianas possesses significantly higher stele proportion and denser conduits, significantly lower cortex proportion, and smaller conduit size than those of vines. However, the specific conductivity was similar. Overall, these results suggest that the cortex is the main driver for the change in root tip diameter rather than the stele. Nevertheless, both factors were responsible for variations in diameter-related traits when compared with number-related traits, with lianas and vines exhibiting distinct regulatory mechanisms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据