4.6 Review

Narrowband Emissive Thermally Activated Delayed Fluorescence Materials

期刊

ADVANCED OPTICAL MATERIALS
卷 10, 期 22, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adom.202201714

关键词

multiple resonance effect; narrowband emission; organic light-emitting diodes; organoboron; thermally activated delayed fluorescence

资金

  1. JSPS KAKENHI [JP21H04694, JP21F21327]
  2. JST CREST [JPMJCR21O5]
  3. JSPS Postdoctoral Fellowships for Research in Japan

向作者/读者索取更多资源

Organic thermally activated delayed fluorescence (TADF) materials have attracted research interest for their efficient excitonic utilization in OLEDs. The broad emission spectra of these materials have limited their application in ultrahigh-definition OLED displays. Recently, a new type of TADF material called MR-TADF materials, based on heteroatom-doped polycyclic aromatic frameworks, has gained attention for its efficient narrowband emissions.
Organic thermally activated delayed fluorescence (TADF) materials have attracted significant research interest in the field of organic electronics because of their inherent advantage of 100% exciton utilization capability in organic light-emitting diodes (OLEDs) without the use of noble metals. However, despite their high internal electroluminescence quantum efficiencies approaching unity, broad emission spectra with sizable full width at half maxima (FWHM; 60-100 nm) present a critical issue that must be solved for their application in ultrahigh-definition OLED displays. Recently, a new paradigm of TADF materials featuring the multiple resonance (MR) effect based on heteroatom-doped polycyclic aromatic frameworks, referred to as MR-TADF materials, has emerged and garnered considerable research interest owing to their remarkable features of efficient narrowband emissions with extremely small FWHMs (<= 30 nm). Currently, MR-TADF materials occupy a prominent position in the cutting-edge research on organic light-emitting materials from both chemical and physical perspectives. This review article focuses on recent progress in narrowband emissive MR-TADF systems from the perspective of molecular design, photophysical properties, and electroluminescence performance in OLEDs. The current status and future prospects of this advanced material technology are discussed comprehensively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据