4.6 Article

Seasonal Water Quality Changes and the Eutrophication of Lake Yilong in Southwest China

期刊

WATER
卷 14, 期 21, 页码 -

出版社

MDPI
DOI: 10.3390/w14213385

关键词

water quality; Lake Yilong; spatial-temporal variations; anthropogenic activities

资金

  1. Yunnan Provincial Government Scientist workshop
  2. Special Project for Social Development of Yunnan Province [202103AC100001]

向作者/读者索取更多资源

The study found that Lake Yilong has well-mixed water, significant seasonal and spatial variations in water quality parameters, with signs of improvement in nutrient status but remaining high total nitrogen levels that need further improvement.
To better understand the seasonal variation characteristics and trend of water quality in Lake Yilong, we monitored water quality parameters and measured nutrients, including the water temperature (WT), Chlorophyll-a (Chl-a), dissolved oxygen (DO) and pH from September 2016 to May 2020, total nitrogen (TN) and total phosphorus (TP) from October 2016 to August 2018. The results showed that the lake water was well mixed, resulting in no significant thermal stratification. The DO content was decreased in the northwest part of the lake during September and October, resulting in a hypoxic condition. It also varied at different locations of the lake and showed a high heterogeneity and seasonal variability. The Chl-a concentration in Lake Yilong demonstrated seasonal and spatial changes. It was maximum at the center and southwest area of the lake in January. However, in the northwest part of the lake, the maximum value appeared in September and October. The content of TN in the rainy season increased by 75% compared with that in dry season and TP content show a downward trend (from 0.11 mg/L to 0.05 mg/L). The comprehensive nutrition index evaluation shows that the water quality of Lake Yilong in 2016 was middle eutrophic (TLI = 60.56), and that in 2017 (TLI = 56.05) and 2018 (TLI = 56.38) was weak eutrophic, showing that the nutritional status has improved. TN remained at a high level (2.15 +/- 0.48 mg/L), water quality needs further improvement. Based on our monitoring and analysis, it is recommended that human activities in the watershed of the lake should be constrained and managed carefully to maintain the water quality of the lake and adopt effective water quality protection and ecological restoration strategies and measures to promote continuous improvement of water quality, for a sustainable social development.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据