4.7 Article

Deforestation Detection in the Amazon Using DeepLabv3+Semantic Segmentation Model Variants

期刊

REMOTE SENSING
卷 14, 期 19, 页码 -

出版社

MDPI
DOI: 10.3390/rs14194694

关键词

DeepLabv3+; semantic segmentation; Amazon; deforestation detection

资金

  1. CAPES (Brazillian Coordination for the Improvement of Higher Education Personnel)
  2. FAPERJ (Rio de Janeiro State Research Funding Agency)

向作者/读者索取更多资源

The Amazon rainforest covers more than half of the remaining tropical forest on Earth and plays a crucial role in regulating rainfall patterns in South America while also holding significant biotechnological potential. Threats such as forest fires, illegal mining, and logging pose risks to the survival of the Amazon, making the use of deep learning to detect deforestation highly effective.
The Amazon rainforest spreads across nine countries and covers nearly one-third of South America, being 69% inside Brazilian borders. It represents more than half of the remaining tropical forest on Earth and covers the catchment basin of the Amazon river on which 20% of the surface fresh water on the planet flows. Such an ecosystem produces large quantities of water vapor, helping regulate rainfall regimes in most of South America, with strong economic implications: for instance, by irrigating crops and pastures, and supplying water for the main hydroelectric plants in the continent. Being the natural habitat of one-tenth of the currently known species, the Amazon also has enormous biotechnological potential. Among the major menaces to the Amazon is the extension of agricultural and cattle farming, forest fires, illegal mining and logging, all directly associated with deforestation. Preserving the Amazon is obviously essential, and it is well-known that remote sensing provides effective tools for environmental monitoring. This work presents a deforestation detection approach based on the DeepLabv3+, a fully convolutional deep learning model devised for semantic segmentation. The proposed method extends the original DeepLabv3+ model, aiming at properly dealing with a strong class imbalanced problem and improving the delineation quality of deforestation polygons. Experiments were devised to evaluate the proposed method in terms of the sensitivity to the weighted focal loss hyperparameters-through an extensive grid search-and the amount of training data, and compared its performance to previous deep learning methods proposed for deforestation detection. Landsat OLI-8 images of a specific region in the Amazon were used in such evaluation. The results indicate that the variants of the proposed method outperformed previous works in terms of the F1-score and Precision metrics. Additionally, more substantial performance gains were observed in the context of smaller volumes of training data. When the evaluated methods were trained using four image tiles, the proposed method outperformed its counterparts by approximately +10% in terms of F1-score (from 63% to 73%); when the methods were trained with only one image tile, the performance difference in terms of F1-score achieved approximately +18% (from 49% to 67%).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据