4.7 Article

Convolutional Neural Network Algorithms for Semantic Segmentation of Volcanic Ash Plumes Using Visible Camera Imagery

期刊

REMOTE SENSING
卷 14, 期 18, 页码 -

出版社

MDPI
DOI: 10.3390/rs14184477

关键词

ANN; automatic classification; risk mitigation; machine learning

资金

  1. CEIBA Colombia foundation - Istituto Nazionale di Geofisica e Vulcanologia (INGV)

向作者/读者索取更多资源

This paper focuses on the detection and segmentation of volcanic ash plumes using convolutional neural networks. The study provides a toolset for volcano monitoring to detect, segment, and track ash plume emissions through the processing and labeling of in situ images.
In the last decade, video surveillance cameras have experienced a great technological advance, making capturing and processing of digital images and videos more reliable in many fields of application. Hence, video-camera-based systems appear as one of the techniques most widely used in the world for monitoring volcanoes, providing a low cost and handy tool in emergency phases, although the processing of large data volumes from continuous acquisition still represents a challenge. To make these systems more effective in cases of emergency, each pixel of the acquired images must be assigned to class labels to categorise them and to locate and segment the observable eruptive activity. This paper is focused on the detection and segmentation of volcanic ash plumes using convolutional neural networks. Two well-established architectures, the segNet and the U-Net, have been used for the processing of in situ images to validate their usability in the field of volcanology. The dataset fed into the two CNN models was acquired from in situ visible video cameras from a ground-based network (Etna_NETVIS) located on Mount Etna (Italy) during the eruptive episode of 24th December 2018, when 560 images were captured from three different stations: CATANIA-CUAD, BRONTE, and Mt. CAGLIATO. In the preprocessing phase, data labelling for computer vision was used, adding one meaningful and informative label to provide eruptive context and the appropriate input for the training of the machine-learning neural network. Methods presented in this work offer a generalised toolset for volcano monitoring to detect, segment, and track ash plume emissions. The automatic detection of plumes helps to significantly reduce the storage of useless data, starting to register and save eruptive events at the time of unrest when a volcano leaves the rest status, and the semantic segmentation allows volcanic plumes to be tracked automatically and allows geometric parameters to be calculated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据