4.7 Article

Numerical Studies on Failure Mechanisms of All-Composite Sandwich Structure with Honeycomb Core under Compression and Impact Loading Conditions

期刊

POLYMERS
卷 14, 期 19, 页码 -

出版社

MDPI
DOI: 10.3390/polym14194047

关键词

all-composite; honeycomb; compression; impact; failure

资金

  1. National Science Foundation of China
  2. Civil Aviation Administration of China [U1433119]

向作者/读者索取更多资源

The mechanical response and damage mechanism of an all-composite sandwich structure with honeycomb core under out-of-plane quasi-static compression and impact are studied using numerical methods. The structure shows large structural stiffness and strong energy absorption ability.
The all-composite sandwich structure with the honeycomb core is a lightweight and high-strength structure with broad application scenarios. The face sheet and honeycomb core of the proposed all-composite sandwich structure in this work are composed of carbon-fiber-reinforced polymer (CFRP) composites. The mechanical response and damage mechanism of the all-composite sandwich structure under out-of-plane quasi-static compression and out-of-plane impact are studied by numerical methods. The refined finite element models of the sandwich structures are built on the ABAQUS/Explicit platform. The micromechanics of failure (MMF) theory based on physical component failure is used to describe the intralaminar damage mechanism of the face sheet and honeycomb core, and the mixed-mode exponential cohesive zone model (ECZM) is utilized to simulate the initiation and evolution of interlayer damage. In addition, the cohesive contact approach is adopted to capture the debonding failure at the face-sheet/core. The numerical results show that the all-composite sandwich structure has the characteristics of large structural stiffness and strong energy absorption ability. The failure mechanism of the all-composite sandwich structure under compression is mainly matrix damage and delamination of the honeycomb core, with buckling and folding in appearance. Under out-of-plane impact, matrix damage and delamination arise on the upper sheet, little damage is observed on the lower sheet, and the delamination damage morphology tends to be circular with increasing impact energy. In addition, the interface failure of the upper-sheet/core is more than that of the lower-sheet/core. In addition, the matrix damage near the impact center of the honeycomb core tends to be consistent with the delamination contour, and a small amount of fiber failure is also observed, which manifests as a collapse morphology of the impact area. The research results enrich the understanding of the mechanical behavior of all-composite sandwich structures with honeycomb cores and provide theoretical support for their potential applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据