4.6 Article

Modelling the first wave of COVID-19 in India

期刊

PLOS COMPUTATIONAL BIOLOGY
卷 18, 期 10, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pcbi.1010632

关键词

-

向作者/读者索取更多资源

Estimating the burden of COVID-19 in India is difficult due to undercounting of cases and deaths. This study analyzed the first wave of the pandemic in India using the INDSCI-SIM model and Bayesian methods. The findings suggest that deaths were undercounted by a factor of 2-5 and cases were undercounted by a factor of 20-25 towards the end of the first wave. The infection fatality ratio was estimated to be in the range of 0.05-0.15, and approximately 35% of India's population had been infected by the end of the first wave.
Estimating the burden of COVID-19 in India is difficult because the extent to which cases and deaths have been undercounted is hard to assess. Here, we use a 9-component, age-stratified, contact-structured epidemiological compartmental model, which we call the INDSCI-SIM model, to analyse the first wave of COVID-19 spread in India. We use INDSCI-SIM, together with Bayesian methods, to obtain optimal fits to daily reported cases and deaths across the span of the first wave of the Indian pandemic, over the period Jan 30, 2020 to Feb 15, 2021. We account for lock-downs and other non-pharmaceutical interventions (NPIs), an overall increase in testing as a function of time, the under-counting of cases and deaths, and a range of age-specific infection-fatality ratios. We first use our model to describe data from all individual districts of the state of Karnataka, benchmarking our calculations using data from serological surveys. We then extend this approach to aggregated data for Karnataka state. We model the progress of the pandemic across the cities of Delhi, Mumbai, Pune, Bengaluru and Chennai, and then for India as a whole. We estimate that deaths were undercounted by a factor between 2 and 5 across the span of the first wave, converging on 2.2 as a representative multiplier that accounts for the urban-rural gradient. We also estimate an overall under-counting of cases by a factor of between 20 and 25 towards the end of the first wave. Our estimates of the infection fatality ratio (IFR) are in the range 0.05-0.15, broadly consistent with previous estimates but substantially lower than values that have been estimated for other LMIC countries. We find that approximately 35% of India had been infected overall by the end of the first wave, results broadly consistent with those from serosurveys. These results contribute to the understanding of the long-term trajectory of COVID-19 in India. Author summary Making sense of publicly available epidemiological data for the COVID-19 pandemic in India presents multiple challenges, largely to do with the quality of the data. Here, we describe ways of addressing these questions by studying the data using a well-parameterised, detailed compartmental model together with Bayesian methods, alongside information derived from pan-India serological surveys. We focus on the first wave of the Indian pandemic, across the interval Jan 30, 2020 to Feb 15, 2021. We estimate that deaths were under-counted by a factor between 2 and 5 across the span of the first wave and that cases were under-counted by a factor of between 20 and 25 towards its end. We estimate an infection fatality ratio (IFR) in the range 0.05-0.15. We find that approximately 35% of India had been infected overall by the end of the first wave, a number that helps us better understand the context in which the second and later waves unfolded.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据