4.7 Article

Beyond Conventional Ferromagnetism and Antiferromagnetism: A Phase with Nonrelativistic Spin and Crystal Rotation Symmetry

期刊

PHYSICAL REVIEW X
卷 12, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevX.12.031042

关键词

-

资金

  1. Ministry of Education of the Czech Republic [LM2018140]
  2. Czech Science Foundation [19-28375X]
  3. EU Future and Emerging Technologies Open RIA Grant [766566]
  4. SPIN + X [DFG SFB TRR 173]
  5. Elasto-Q-Mat [DFG SFB TRR 288]

向作者/读者索取更多资源

Recent research has focused on spintronic and spin-splitting phenomena that break time-reversal symmetry. This study introduces a new approach based on nonrelativistic spin-symmetry groups to resolve the conflicting notions of unconventional ferromagnetism or antiferromagnetism and proposes a third type of magnetic phase. The research identifies crystal-rotation symmetries and characteristics of materials hosting this phase, including alternating spin-splitting sign and broken time-reversal symmetry.
Recent series of theoretical and experimental reports have driven attention to time-reversal symmetry -breaking spintronic and spin-splitting phenomena in materials with collinear-compensated magnetic order incompatible with conventional ferromagnetism or antiferromagnetism. Here we employ an approach based on nonrelativistic spin-symmetry groups that resolves the conflicting notions of unconventional ferromagnetism or antiferromagnetism by delimiting a third basic collinear magnetic phase. We derive that all materials hosting this collinear-compensated magnetic phase are characterized by crystal-rotation symmetries connecting opposite-spin sublattices separated in the real space and opposite-spin electronic states separated in the momentum space. We describe prominent extraordinary characteristics of the phase, including the alternating spin-splitting sign and broken time-reversal symmetry in the nonrelativistic band structure, the planar or bulk d-, g-, or i-wave symmetry of the spin-dependent Fermi surfaces, spin -degenerate nodal lines and surfaces, band anisotropy of individual spin channels, and spin-split general, as well as time-reversal invariant momenta. Guided by the spin-symmetry principles, we discover in ab initio calculations outlier materials with an extraordinary nonrelativistic spin splitting, whose eV-scale and momentum dependence are determined by the crystal potential of the nonmagnetic phase. This spin -splitting mechanism is distinct from conventional relativistic spin-orbit coupling and ferromagnetic exchange, as well as from the previously considered anisotropic exchange mechanism in compensated magnets. Our results, combined with our identification of material candidates for the phase ranging from insulators and metals to a parent crystal of cuprate superconductors, underpin research of novel quantum phenomena and spintronic functionalities in high-temperature magnets with light elements, vanishing net magnetization, and strong spin coherence. In the discussion, we argue that the conflicting notions of unconventional ferromagnetism or antiferromagnetism, on the one hand, and our symmetry-based delimitation of the third phase, on the other hand, favor a distinct term referring to the phase. The alternating spin polarizations in both the real-space crystal structure and the momentum-space band structure characteristic of this unconventional magnetic phase suggest a term altermagnetism. We point out that d-wave altermagnetism represents a realization of the long-sought-after counterpart in magnetism of the unconventional d-wave superconductivity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据