4.7 Review

Surface Modification on Biodegradable Magnesium Alloys as Orthopedic Implant Materials to Improve the Bio-adaptability: A Review

期刊

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
卷 32, 期 9, 页码 827-834

出版社

JOURNAL MATER SCI TECHNOL
DOI: 10.1016/j.jmst.2016.05.003

关键词

Bio-adaptability; Coating; Biodegradable; Magnesium alloys; Orthopedic implants

资金

  1. National Basic Research Program of China (973 Program) [2012CB619101]

向作者/读者索取更多资源

Magnesium (Mg) and its alloys as a novel kind of biodegradable material have attracted much fundamental research and valuable exploration to develop its clinical application. Mg alloys degrade too fast at the early stage after implantation, thus commonly leading to some problems such as osteolysis, early fast mechanical loss, hydric bubble aggregation, gap formation between the implants and the tissue. Surface modification is one of the effective methods to control the degradation property of Mg alloys to adapt to the need of organism. Some coatings with bioactive elements have been developed, especially for the micro-arc oxidation coating, which has high adhesion strength and can be added with Ca, P, and Sr elements. Chemical deposition coating including bio-mimetic deposition coating, electro-deposition coating and chemical conversion coating can provide good anticorrosion property as well as better bioactivity with higher Ca and P content in the coating. From the biodegradation study, it can be seen that surface coating protected the Mg alloys at the early stage providing the Mg alloy substrate with lower degradation rate. The biocompatibility study showed that the surface modification could provide the cell and tissue stable and weak alkaline surface micro-environment adapting to the cell adhesion and tissue growth. The surface modification also decreased the mechanical loss at the early stage adapting to the load bearing requirement at this stage. From the interface strength between Mg alloys implants and the surrounding tissue study, it can be seen that the surface modification improved the bio-adhesion of Mg alloys with the surrounding tissue, which is believed to be contributed to the tissue adaptability of the surface modification. Therefore, the surface modification adapts the biodegradable magnesium alloys to the need of biodegradation, biocompatibility and mechanical loss property. For the different clinical application, different surface modification methods can be provided to adapt to the clinical requirements for the Mg alloy implants. Copyright (C) 2016, The editorial office of Journal of Materials Science & Technology. Published by Elsevier Limited.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据