4.7 Article

Activation of arcuate nucleus glucagon-like peptide-1 receptor-expressing neurons suppresses food intake

期刊

CELL AND BIOSCIENCE
卷 12, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s13578-022-00914-3

关键词

Glucagon-like peptide-1; Hypothalamus; Pro-opiomelanocortin; Exendin-4; Chemogenetics; Glucose tolerance; Feeding

资金

  1. Robert Wood Johnson Foundation [74260]
  2. NIH NIDDK [R01DK131452, R01DK122167]
  3. Banting and Best Diabetes Centre, University of Toronto

向作者/读者索取更多资源

This study analyzed the distribution of GLP-1R-expressing neurons and their axonal projections in the mouse brain. The results showed that GLP-1R neurons are widely distributed, especially in the hypothalamus, including the ARC, a region known to regulate energy homeostasis and feeding behavior. Activation of ARC GLP-1R neurons significantly suppressed food intake but had minimal impact on glucose homeostasis.
Background Central nervous system (CNS) control of metabolism plays a pivotal role in maintaining energy balance. In the brain, Glucagon-like peptide 1 (GLP-1), encoded by the proglucagon 'Gcg' gene, produced in a distinct population of neurons in the nucleus tractus solitarius (NTS), has been shown to regulate feeding behavior leading to the suppression of appetite. However, neuronal networks that mediate endogenous GLP-1 action in the CNS on feeding and energy balance are not well understood. Results We analyzed the distribution of GLP-1R-expressing neurons and axonal projections of NTS GLP-1-producing neurons in the mouse brain. GLP-1R neurons were found to be broadly distributed in the brain and specific forebrain regions, particularly the hypothalamus, including the arcuate nucleus of the hypothalamus (ARC), a brain region known to regulate energy homeostasis and feeding behavior, that receives dense NTSGcg neuronal projections. The impact of GLP-1 signaling in the ARC GLP-1R-expressing neurons and the impact of activation of ARC GLP-1R on food intake was examined. Application of GLP-1R specific agonist Exendin-4 (Exn-4) enhanced a proportion of the ARC GLP-1R-expressing neurons and pro-opiomelanocortin (POMC) neuronal action potential firing rates. Chemogenetic activation of the ARC GLP-1R neurons by using Cre-dependent hM3Dq AAV in the GLP-1R-ires-Cre mice, established that acute activation of the ARC GLP-1R neurons significantly suppressed food intake but did not have a strong impact on glucose homeostasis. Conclusions These results highlight the importance of central GLP-1 signaling in the ARC that express GLP-1R that upon activation, regulate feeding behavior.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据