4.7 Article

Human umbilical cord mesenchymal stem cells ameliorate erectile dysfunction in rats with diabetes mellitus through the attenuation of ferroptosis

期刊

STEM CELL RESEARCH & THERAPY
卷 13, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s13287-022-03147-w

关键词

Erectile dysfunction; Human umbilical cord mesenchymal stem cells; Type 1 diabetes mellitus; Type 2 diabetes mellitus; Ferroptosis

资金

  1. Natural Science Foundation of Shenzhen [JCYJ20210324134400002, JCYJ20210324141404010]
  2. Hubei Provincial Medical Youth Top Talent Project

向作者/读者索取更多资源

The study demonstrates that HUCMSCs can effectively and safely alleviate erectile dysfunction in T1DM and T2DM ED rats by attenuating diabetes-induced ferroptosis in CCSMCs. Furthermore, it provides significant evidence for the development of HUCMSCs as a viable therapeutic strategy for DMED.
Background Erectile dysfunction (ED), as one of the most prevalent consequences in male diabetic patients, has a serious impact on men's physical and mental health, and the treatment effect of diabetic mellitus erectile dysfunction (DMED) is often worse. Therefore, the development of a novel therapeutic approach is urgent. As stem cells with high differentiation potential, human umbilical cord mesenchymal stem cells (HUCMSCs) have been widely used in the treatment of diseases in other systems, and are expected to be a promising strategy for the treatment of DMED. In this study, we investigated the role of HUCMSCs in managing erectile function in rat models of type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) and compared the effects of two different injection methods. Methods T1DM and T2DM ED rats were given labelled HUCMSCs by corpus cavernosum injection and tail vein injection, respectively. ICP and MAP were monitored simultaneously by electrical stimulation four weeks after injection to indicate the erectile function of rats. To track the development and colonisation capabilities of stem cells, we performed EdU assay with penile tissue. The histological changes of the penis were observed by hematoxylin-eosin staining, and Masson's trichrome staining was conducted to evaluate the smooth muscle content and the degree of fibrosis in the rat penis. Then, we employed specific kits to measure the level of NO, cGMP, MDA, SOD and Fe in penis. Electron transmission microscopy was implemented to observe morphology of mitochondria. Besides, western blot and immunofluorescence staining were performed to demonstrate the expression of ferroptosis-related genes. Results We found that HUCMSCs improved erectile function in T1DM and T2DM ED rats, with no difference in efficacy between corpus cavernosum injection and tail vein injection. The EdU assay revealed that only a tiny percentage of HUCMSCs colonised the corpus cavernosum, while smooth muscle in the penis expanded and collagen decreased following HUCMSC injection. Moreover, the levels of oxidative stress in the penis of the rats given HUCMSCs were dramatically reduced, as was the tissue iron content. HUCMSCs normalised mitochondrial morphology within corpus cavernosum smooth muscle cells (CCSMCs), which were characteristically altered by high glucose. Furthermore, the expression of ferroptosis inhibitory genes SLC7A11 and GPX4 was obviously elevated in CCSMCs after stem cell management, but the abundances of ACSL4, LPCAT3 and ALOX15 showed the polar opposite tendency. Conclusions HUCMSCs can effectively and safely alleviate erectile dysfunction in T1DM and T2DM ED rats, while restoring erectile function by attenuating diabetes-induced ferroptosis in CCSMCs. Additionally, this study provides significant evidence for the development of HUCMSCs as a viable therapeutic strategy for DMED.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据