4.7 Article

Electrospray mode discrimination with current signal using deep convolutional neural network and class activation map

期刊

SCIENTIFIC REPORTS
卷 12, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-022-20352-y

关键词

-

资金

  1. National Research Foundation of Korea (NRF) - Korea government (MSIT) [2020R1C1C100944311]
  2. Korea Institute of Industrial Technology as Development of intelligent root technology with add-on modules [KITECH EO-220005]
  3. Hyundai Motor Chung Mong-Koo Foundation

向作者/读者索取更多资源

This study develops a deep convolutional neural network method based on the current signal to automatically discriminate the mode of the electrospray process, achieving excellent performance.
The electrospray process has been extensively applied in various fields, including energy, display, sensor, and biomedical engineering owing to its ability to generate of functional micro/nanoparticles. Although the mode of the electrospray process has a significant impact on the quality of micro/nano particles, observing and discriminating the mode of electrospray during the process has not received adequate attention. This study develops a simple automated method to discriminate the mode of the electrospray process based on the current signal using a deep convolutional neural network (CNN) and class activation map (CAM). The solution flow rate and applied voltage are selected as experimental variables, and the electrospray process is classified into three modes: dripping, pulsating, and cone-jet. The current signal through the collector is measured to detect the deposition of electrospray droplets on the collector. The 1D CNN model is trained using frequency data converted from the current data. The model exhibits excellent performance with an accuracy of 96.30%. Adoption of the CAM configuration enables the model to provide a discriminative cue for each mode and elucidate the decision-making process of the CNN model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据