4.7 Article

Evidence of secular variation in Archean crust formation in the Eastern Indian Shield

期刊

SCIENTIFIC REPORTS
卷 12, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-022-18372-9

关键词

-

资金

  1. Council of Scientific and Industrial Research-National Geophysical Research Institute (CSIR-NGRI), Hyderabad, India
  2. 12-year INDEX project of CSIR-NGRI, Hyderabad, India

向作者/读者索取更多资源

Understanding the dominant crustal accretion model in Archean cratons is essential for understanding early crust formation processes. This study models Moho depths and crustal Vp/Vs ratios in the Eastern Indian Shield to test plume and subduction models. The results show a correlation between crustal age and composition, indicating different crustal accretion processes in different regions.
Understanding the dominant crustal accretion model in any Archean craton is the key to understanding the dominant geodynamic process responsible for early crust formation during the Hadean (> 4.0 Ga) and Archaean (4.0-2.5 Ga). The continental crust has been proposed to have formed through either horizontal/vertical accretion related to subduction or mantle plume tectonic processes. Here, the Moho depths and average crustal Vp/Vs ratios are modelled at 16 broadband stations in the Eastern Indian Shield (EIS) through HK stacking of radial P-receiver functions (PRFs). These modelled parameters are used to test both plume and subduction models, which might have played a key role in the crustal accretion of the EIS throughout the Archean. We observe a correlation between crustal age and composition within the ellipsoidal Paleoarchean cratonic domain in the Singhbhum-Odisha-Craton (SOC), which reveals an increase in age from the younger granitoid core of the SOC (with thinning of felsic crust) to the surrounding older greenstone belts (with thickening of felsic crust). A thinner mafic crust resulting from multiple magmatic events characterizes the neighbouring Meso-Proterozoic Chotanagpur Granitic Gneissic terrain (CGGT). The Common Conversion Point (CCP) image of radial PRFs reveals northward subduction of the Paleoarchean SOC below the Meso-Proterozoic CGGT.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据