4.7 Article

Tracking mutational semantics of SARS-CoV-2 genomes

期刊

SCIENTIFIC REPORTS
卷 12, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-022-20000-5

关键词

-

向作者/读者索取更多资源

This article describes how natural language processing algorithms can be used to analyze the genomes and mutations of SARS-CoV-2, revealing its characteristics and evolution. The research found that NLP algorithms can not only study the temporal mutation features through dynamic topic modeling, but also track the semantic drift to understand the correlation of genomic mutations. In addition, this method is promising in uncovering the mutation relevance to patient health status.
Natural language processing (NLP) algorithms process linguistic data in order to discover the associated word semantics and develop models that can describe or even predict the latent meanings of the data. The applications of NLP become multi-fold while dealing with dynamic or temporally evolving datasets (e.g., historical literature). Biological datasets of genome-sequences are interesting since they are sequential as well as dynamic. Here we describe how SARS-CoV-2 genomes and mutations thereof can be processed using fundamental algorithms in NLP to reveal the characteristics and evolution of the virus. We demonstrate applicability of NLP in not only probing the temporal mutational signatures through dynamic topic modelling, but also in tracing the mutation-associations through tracing of semantic drift in genomic mutation records. Our approach also yields promising results in unfolding the mutational relevance to patient health status, thereby identifying putative signatures linked to known/highly speculated mutations of concern.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据