4.7 Article

Massive and massless plasmons in germanene nanosheets

期刊

SCIENTIFIC REPORTS
卷 12, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-022-23058-3

关键词

-

向作者/读者索取更多资源

This article investigates the electronic states in atomically thin crystals and their potential applications in optoelectronics and plasmonics.
Atomically thin crystals may exhibit peculiar dispersive electronic states equivalent to free charged particles of ultralight to ultraheavy masses. A rare coexistence of linear and parabolic dispersions yields correlated charge density modes exploitable for nanometric light confinement. Here, we use a time-dependent density-functional approach, under several levels of increasing accuracy, from the random-phase approximation to the Bethe-Salpeter equation formalism, to assess the role of different synthesized germanene samples as platforms for these plasmon excitations. In particular, we establish that both freestanding and some supported germenene monolayers can sustain infrared massless modes, resolved into an out-of-phase (optical) and an in-phase (acoustic) component. We further indicate precise experimental geometries that naturally host infrared massive modes, involving two different families of parabolic charge carriers. We thus show that the interplay of the massless and massive plasmons can be finetuned by applied extrinsic conditions or geometry deformations, which constitutes the core mechanism of germanene-based optoelectronic and plasmonic applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据