4.7 Article

Realization of optical logic gates using on-chip diffractive optical neural networks

期刊

SCIENTIFIC REPORTS
卷 12, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-022-19973-0

关键词

-

资金

  1. Iran National Science Foundation [4002443]

向作者/读者索取更多资源

Optical computing is a promising strategy to overcome the limitations of electronic devices, and a multi-functional optical logic gate based on diffractive optical neural network is proposed here. It can perform various logic operations quickly and operate at multiple wavelengths, providing a new path for high-speed nanophotonic processors in future optical computing applications.
Optical computing is highly desired as a potential strategy for circumventing the performance limitations of semiconductor-based electronic devices and circuits. Optical logic gates are considered as fundamental building blocks for optical computation and they enable logic functions to be performed extremely quickly without the generation of heat and crosstalk. Here, we discuss the design of a multi-functional optical logic gate based on an on-chip diffractive optical neural network that can perform AND, NOT and OR logic operations at the wavelength of 1.55 mu m. The wavelength-independent operation of the multi-functional logic gate at seven wavelengths (over a bandwidth of 60 nm) is also studied which paves the way for wavelength division multiplexed parallel computation. This simple, highly-integrable, low-loss, energy-efficient and broadband optical logic gate provides a path for the development of high-speed on-chip nanophotonic processors for future optical computing applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据