4.7 Article

Naive pluripotent-like characteristics of non-tumorigenic Muse cells isolated from human amniotic membrane

期刊

SCIENTIFIC REPORTS
卷 12, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-022-22282-1

关键词

-

资金

  1. Japan Society for the Promotion of Science
  2. Life Science Institute, Inc.

向作者/读者索取更多资源

Multilineage-differentiating stress-enduring (Muse) cells are a type of non-tumorigenic pluripotent-like stem cells that can undergo triploblastic differentiation and self-renewal at the single-cell level. Human amniotic membrane mesenchymal stem cells (hAMSCs) exhibit unique characteristics compared to human bone marrow (hBM)-Muse cells, including differential gene expression and broader differentiation potential.
Multilineage-differentiating stress-enduring (Muse) cells are non-tumorigenic pluripotent-like stem cells that exhibit triploblastic differentiation and self-renewability at the single-cell level, and are collectable as pluripotent surface marker SSEA-3(+) from the bone marrow (BM), peripheral blood, and organ connective tissues. SSEA-3(+) cells from human amniotic membrane mesenchymal stem cells (hAMSCs) were compared with hBM-Muse cells. Similar to hBM-Muse cells, hAMSC-SSEA-3(+) cells expressed pluripotency genes (OCT3/4, NANOG, and SOX2), differentiated into triploblastic cells from a single cell, self-renewed, and exhibited non-tumorigenicity. Notably, however, they exhibited unique characteristics not seen in hBM-Muse cells, including higher expression of genes related to germline- and extraembryonic cell-lineages compared with those in hBM-Muse cells in single-cell RNA-sequencing; and enhanced expression of markers relevant to germline- (PRDM14, TFAP2C, and NANOS3) and extraembryonic cell- (CDX2, GCM1, and ID2) lineages when induced by cytokine subsets, suggesting a broader differentiation potential similar to naive pluripotent stem cells. t-SNE dimensionality reduction and Gene ontology analysis visualized hAMSC-SSEA-3(+) cells comprised a large undifferentiated subpopulation between epithelial- and mesenchymal-cell states and a small mesenchymal subpopulation expressing genes relevant to the placental formation. The AM is easily accessible by noninvasive approaches. These unique cells are a potentially interesting target naive pluripotent stem cell-like resource without tumorigenicity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据