4.7 Article

Nondestructive classification of soft rot disease in napa cabbage using hyperspectral imaging analysis

期刊

SCIENTIFIC REPORTS
卷 12, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-022-19169-6

关键词

-

资金

  1. World Institute of Kimchi [KE2102-2, KE2202-2]
  2. Ministry of Science and ICT, the Republic of Korea

向作者/读者索取更多资源

This study explored the potential of hyperspectral imaging (HSI) processing in the near-infrared region for nondestructive classification of napa cabbage quality. The researchers successfully predicted and classified the freshness of napa cabbage by extracting HSI characteristics from hyperspectral images. The SVM model accurately distinguished healthy cabbage from cabbage exhibiting soft rot disease symptoms.
Identification of soft rot disease in napa cabbage, an essential ingredient of kimchi, is challenging at the industrial scale. Therefore, nondestructive imaging techniques are necessary. Here, we investigated the potential of hyperspectral imaging (HSI) processing in the near-infrared region (900-1700 nm) for classifying napa cabbage quality using nondestructive measurements. We determined the microbiological and physicochemical qualitative properties of napa cabbage for intercomparison of HSI information, extracted HSI characteristics from hyperspectral images to predict and classify freshness, and established a novel approach for classifying healthy and rotten napa cabbage. The second derivative Savitzky-Golay method for data preprocessing was implemented, followed by wavelength selection using variable importance in projection scores. For multivariate data of the classification models, partial least square discriminant analysis (PLS-DA), support vector machine (SVM), and random forests were used for predicting cabbage conditions. The SVM model accurately distinguished the cabbage exhibiting soft rot disease symptoms from the healthy cabbage. This study presents the potential of HSI systems for separating soft rot disease-infected napa cabbages from healthy napa cabbages using the SVM model, especially under the most effective wavelengths (970, 980, 1180, 1070, 1120, and 978 nm), prior to processing. These results are applicable to industrial multispectral images.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据