4.6 Article

Biocompatible Properties and Mineralization Potential of Premixed Calcium Silicate-Based Cements and Fast-Set Calcium Silicate-Based Cements on Human Bone Marrow-Derived Mesenchymal Stem Cells

期刊

MATERIALS
卷 15, 期 21, 页码 -

出版社

MDPI
DOI: 10.3390/ma15217595

关键词

calcium silicate-based cement; human bone marrow-derived mesenchymal stem cell; biocompatibility; mineralization potential

资金

  1. National Research Foundation of Korea (NRF) - Ministry of Education [NRF-2021R1I1A2041534]
  2. Research Fund of Seoul St. Mary's Hospital, The Catholic University of Korea

向作者/读者索取更多资源

Using premixed calcium silicate-based cements and fast-set cements as retrograde filling materials can facilitate satisfactory biological responses and demonstrate comparable osteogenic potential to ProRoot MTA.
Premixed calcium silicate-based cements (CSCs) and fast-set CSCs were developed for the convenience of retrograde filling during endodontic microsurgery. The aim of this study was to analyze the biocompatible properties and mineralization potential of premixed CSCs, such as Endocem MTA Premixed (EM Premixed) and EndoSequence BC RRM putty (EndoSequence), and fast-set RetroMTA on human bone marrow-derived mesenchymal stem cells (BMSCs) compared to ProRoot MTA. Using CCK-8, a significantly higher proliferation of BMSCs occurred only in the EM Premixed group on days 2 and 4 (p < 0.05). On day 6, the ProRoot MTA group had significantly higher cell proliferation than the control group (p < 0.05). Regardless of the experimental materials, all groups had complete cell migration by day 4. Alizarin Red-S staining and alkaline phosphatase assay demonstrated higher mineralization potential of all CSCs similar to ProRoot MTA (p < 0.05). The EndoSequence group showed more upregulation of SMAD1 and OSX gene expression than the other experimental groups (p < 0.05), and all experimental cements upregulated osteogenic gene expression more than the control group (p < 0.05). Therefore, using premixed CSCs and fast-set CSCs as retrograde filling cements may facilitate satisfactory biological responses and comparable osteogenic potential to ProRoot MTA.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据