4.6 Article

Electrospun nickel nanoparticles@poly(vinylidene fluoride-hexafluoropropylene) nanofibers as effective and reusable catalyst for H2 generation from sodium borohydride

期刊

ARABIAN JOURNAL OF CHEMISTRY
卷 15, 期 11, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.arabjc.2022.104207

关键词

Ni@PVDF-HFP; Nanofibers; Electrospinning; Sodium Borohydride; Hydrogen

资金

  1. King Saud University, Riyadh, Saudi Arabia
  2. [RSP-2021/370]

向作者/读者索取更多资源

Nickel nanoparticles supported on Poly(vinylidene fluoride-cohexafluoropropylene) nanofibers were successfully synthesized through electrospinning and in-situ reduction. The nanofiber membranes exhibited good catalytic activity in hydrogen production, with the sample containing 40 wt% nickel showing the highest activity. The catalyst demonstrated satisfactory stability and could be easily recycled.
Nickel nanoparticles (Ni NPs) supported on Poly(vinylidene fluoride-cohexafluoropropylene) nanofibers (PVDF-HFP NFs) were successfully synthesized through electrospinning and in-situ reduction of Ni2+ salts into the surface of PVDF-HFP NFs to form metallic Ni NPs@PVDF-HFP NFs. Different percentages of nickel acetate tetrahydrate (NiAc) (10 %, 20 %, 30 %, 40 % wt.) based PVDF-HFP. The formation of tiny metallic Ni NPs @PVDF-HFP membrane NFs was demonstrated using standard physiochemical techniques. Nanofibers membranes have demonstrated good catalytic activity in H2 production from sodium borohydride (NaBH4). The sample composed of 40 %wt Ni showed the highest catalytic activity compared to the other formulations. Whereas 103 mL of H2, from the hydrolysis of 1.34 mmol NaBH4, was produced using 40 wt% NiAc compared to 68 mL, 81 mL, and 93 mL for 10 wt%, 20 wt%, and 30 wt% NiAc, respectively, in 60 min at 25 degrees C. The hydrogen generation has been enhanced with an increase in the Nanofibers membrane amount and reaction temperature. The latter results in a low activation energy (23.52 kJ mol-1). The kinetics study revealed that the reaction was pseudo-first-order in sodium borohydride concentration and catalyst amount. Furthermore, the catalyst exhibits satisfactory stability in the hydrolysis process for ten cycles. Because of its easy recyclability, the introduced catalyst has a wide range of potential applications in the generation of H2 from sodium borohydride hydrolysis. (c) 2022 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据