4.8 Article

Rhodium nanocrystals on porous graphdiyne for electrocatalytic hydrogen evolution from saline water

期刊

NATURE COMMUNICATIONS
卷 13, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-022-32937-2

关键词

-

资金

  1. National Nature Science Foundation of China [21790050, 21790051, 22021002, 22005310]
  2. National Key Research and Development Project of China [2018YFA0703501]
  3. Key Program of the Chinese Academy of Sciences [XDPB13]
  4. Postdoctoral Science Foundation of China [2019M660806]

向作者/读者索取更多资源

This study reports the facile synthesis of well-defined Rhodium nanocrystals with high-density atomic steps in aqueous solution. The experimental results demonstrate the excellent electrocatalytic performance and high stability of the synthesized catalyst.
The realization of the efficient hydrogen conversion with large current densities at low overpotentials represents the development trend of this field. Here we report the atomic active sites tailoring through a facile synthetic method to yield well-defined Rhodium nanocrystals in aqueous solution using formic acid as the reducing agent and graphdiyne as the stabilizing support. High-resolution high-angle annular dark-field scanning-transmission electron microscopy images show the high-density atomic steps on the faces of hex-ahedral Rh nanocrystals. Experimental results reveal the formation of stable sp-C-Rh bonds can stabilize Rh nanocrystals and further improve charge transfer ability in the system. Experimental and density functional theory calculation results solidly demonstrate the exposed high active stepped surfaces and various metal atomic sites affect the electronic structure of the catalyst to reduce the overpotential resulting in the large-current hydrogen production from saline water. This exciting result demonstrates unmatched electrocatalytic performance and highly stable saline water electrolysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据