4.8 Article

Scalable anisotropic cooling aerogels by additive freeze-casting

期刊

NATURE COMMUNICATIONS
卷 13, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-022-33234-8

关键词

-

资金

  1. Research Grants Council [16205517, 16200720]
  2. Innovation and Technology Commission of Hong Kong SAR [ITS/012/19]
  3. PolyU [P0038855, P0038858]

向作者/读者索取更多资源

Cooling in buildings is crucial for human well-being, but it consumes significant energy. Thermally superinsulating aerogels are promising for energy-efficient cooling, but they tend to absorb sunlight and scaling up their production is challenging. In this study, the authors develop a thermally insulating and solar-reflective anisotropic cooling aerogel panel using a freeze-casting technique, which shows excellent performance in minimizing heat gains and achieving lower interior temperatures.
Cooling in buildings is vital to human well-being but inevitability consumes significant energy, adding pressure on achieving carbon neutrality. Thermally superinsulating aerogels are promising to isolate the heat for more energy-efficient cooling. However, most aerogels tend to absorb the sunlight for unwanted solar heat gain, and it is challenging to scale up the aerogel fabrication while maintaining consistent properties. Herein, we develop a thermally insulating, solar-reflective anisotropic cooling aerogel panel containing in-plane aligned pores with engineered pore walls using boron nitride nanosheets by an additive freeze-casting technique. The additive freeze-casting offers highly controllable and cumulative freezing dynamics for fabricating decimeter-scale aerogel panels with consistent in-plane pore alignments. The unique anisotropic thermo-optical properties of the nanosheets combined with in-plane pore channels enable the anisotropic cooling aerogel to deliver an ultralow out-of-plane thermal conductivity of 16.9 mW m(-1) K-1 and a high solar reflectance of 97%. The excellent dual functionalities allow the anisotropic cooling aerogel to minimize both parasitic and solar heat gains when used as cooling panels under direct sunlight, achieving an up to 7 degrees C lower interior temperature than commercial silica aerogels. This work offers a new paradigm for the bottom-up fabrication of scalable anisotropic aerogels towards practical energy-efficient cooling applications. Scaling up anisotropic freeze-casting processes can be challenging due to the temperature gradient farther from the cold source. Here, authors report an additive freeze-casting technique able to produce large-scale aerogel panels and demonstrate it towards practical passive cooling applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据