4.8 Article

Dispersive transport dynamics in porous media emerge from local correlations

期刊

NATURE COMMUNICATIONS
卷 13, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-022-33485-5

关键词

-

资金

  1. Max Planck Society
  2. European Research Council (ERC) under the European Union [947630]
  3. European Research Council (ERC) [947630] Funding Source: European Research Council (ERC)

向作者/读者索取更多资源

This study investigates dispersive transport through complex media and reveals the nonlinear dependence between microscopic morphology and macroscopic transport characteristics by studying the statistics of pore-junction units. It is of great significance for understanding and controlling transport in complex media.
Dispersive transport through complex media, relevant for semiconductors, liquid crystals, and biological soft matter, is influenced by their microscopic, porous structure. The authors consider the statistics of pore-junction units, in contrast to individual pores, to link morphology and macroscopic transport characteristics. Understanding and controlling transport through complex media is central for a plethora of processes ranging from technical to biological applications. Yet, the effect of micro-scale manipulations on macroscopic transport dynamics still poses conceptual conundrums. Here, we demonstrate the predictive power of a conceptual shift in describing complex media by local micro-scale correlations instead of an assembly of uncorrelated minimal units. Specifically, we show that the non-linear dependency between microscopic morphological properties and macroscopic transport characteristics in porous media is captured by transport statistics on the level of pore junctions instead of single pores. Probing experimentally and numerically transport through two-dimensional porous media while gradually increasing flow heterogeneity, we find a non-monotonic change in transport efficiency. Using analytic arguments, we built physical intuition on how this non-monotonic dependency emerges from junction statistics. The shift in paradigm presented here broadly affects our understanding of transport within the diversity of complex media.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据