4.6 Article

Carbonation in Concrete Infrastructure in the Context of Global Climate Change: Model Refinement and Representative Concentration Pathway Scenario Evaluation

期刊

出版社

ASCE-AMER SOC CIVIL ENGINEERS
DOI: 10.1061/(ASCE)MT.1943-5533.0001438

关键词

-

向作者/读者索取更多资源

A number of recent studies have identified and begun to quantify increased susceptibility of the infrastructure to climate change-induced carbonation of reinforced concrete. In this paper, the results of a study are presented which uses an updated empirical model to predict the diffusion coefficient of carbon dioxide (CO2) in concrete and thereafter, predict carbonation depths for a number of urban environments in the United States. Data from newer climate forecasts from the 5th Intergovernmental Panel on Climate Change assessment report are used to generate predictions for carbonation depths in four U.S. cities of varying geographic and climatic conditions (Los Angeles, Houston, Chicago, New York City). Results confirm that carbonation depths will increase in the future because of climate change. The magnitude of the increase is dependent on the climate-change scenario considered and the geographic location of the city. Whether or not the increases will require building code changes to increase concrete cover or improve concrete quality will be dependent on actual construction practices for the city in question.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据