4.8 Article

Natural scene sampling reveals reliable coarse-scale orientation tuning in human V1

期刊

NATURE COMMUNICATIONS
卷 13, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-022-34134-7

关键词

-

资金

  1. Intramural Research Program of the NIH [ZIAMH002966]
  2. NSF [IIS-1822929, IIS-1822683]

向作者/读者索取更多资源

This study investigates whether orientation-selectivity is discernable via fMRI through analyzing a public dataset of responses to natural scenes using neurally-inspired image-computable models. It demonstrates that orientation-selective BOLD responses reflect multiple distinct computations and reveals a coarse-scale map of orientation preference that may constitute the neural basis for known perceptual anisotropies.
Whether orientation-selectivity is discernable via fMRI remains unclear. Here, by analyzing a public dataset of responses to natural scenes using neurally-inspired image-computable models, the authors isolate and characterize a coarse-scale orientation map and demonstrate that orientation-selective BOLD responses reflect multiple distinct computations at a range of spatial scales. Orientation selectivity in primate visual cortex is organized into cortical columns. Since cortical columns are at a finer spatial scale than the sampling resolution of standard BOLD fMRI measurements, analysis approaches have been proposed to peer past these spatial resolution limitations. It was recently found that these methods are predominantly sensitive to stimulus vignetting - a form of selectivity arising from an interaction of the oriented stimulus with the aperture edge. Beyond vignetting, it is not clear whether orientation-selective neural responses are detectable in BOLD measurements. Here, we leverage a dataset of visual cortical responses measured using high-field 7T fMRI. Fitting these responses using image-computable models, we compensate for vignetting and nonetheless find reliable tuning for orientation. Results further reveal a coarse-scale map of orientation preference that may constitute the neural basis for known perceptual anisotropies. These findings settle a long-standing debate in human neuroscience, and provide insights into functional organization principles of visual cortex.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据