4.8 Article

From an antiferromagnetic insulator to a strongly correlated metal in square-lattice MCl2(pyrazine)2 coordination solids

期刊

NATURE COMMUNICATIONS
卷 13, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-022-33342-5

关键词

-

资金

  1. University of Bordeaux
  2. Region Nouvelle Aquitaine
  3. Quantum Matter Bordeaux (QMBx)
  4. ANR [ANR-20-CE07-0022]
  5. Centre National de la Recherche Scientifique (CNRS)
  6. GdR MCM-2 (Magnetisme & Commutation Moleculaires)
  7. Association Francaise de Magnetisme Moleculaire
  8. MOLSPIN COST action [CA15128]
  9. VILLUM Foundation [15374]
  10. Carlsberg Foundation [CF17-0637]
  11. Danish Agency for Science, Technology, and Innovation
  12. Basque Government
  13. ANID FONDECYT Regular [1220986]
  14. supercomputing infrastructure of NLHPC [ECM-02]
  15. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0019992]
  16. Center for MoleculDar Quantum Transduction (CMQT), an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Basic Energy Sciences [DESC0021314]
  17. Agence Nationale de la Recherche (ANR) [ANR-20-CE07-0022] Funding Source: Agence Nationale de la Recherche (ANR)

向作者/读者索取更多资源

The electronic synergy between metal ions and organic linkers is essential for engineering molecule-based materials with high electrical conductivity and metallicity. This study demonstrates the crucial role of metal ions in tuning the electronic properties of such materials, leading to high room-temperature conductivity and the existence of a correlated metal state.
Electronic synergy between metal ions and organic linkers is a key to engineering molecule-based materials with a high electrical conductivity and, ultimately, metallicity. To enhance conductivity in metal-organic solids, chemists aim to bring the electrochemical potentials of the constituent metal ions and bridging organic ligands closer in a quest to obtain metal-d and ligand-pi admixed frontier bands. Herein, we demonstrate the critical role of the metal ion in tuning the electronic ground state of such materials. While VCl2(pyrazine)(2) is an electrical insulator, TiCl2(pyrazine)(2) displays the highest room-temperature electronic conductivity (5.3 S cm(-1)) for any metal-organic solid involving octahedrally coordinated metal ions. Notably, TiCl2(pyrazine)(2) exhibits Pauli paramagnetism consistent with the specific heat, supporting the existence of a Fermi liquid state (i.e., a correlated metal). This result widens perspectives for designing molecule-based systems with strong metal-ligand covalency and electronic correlations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据