4.6 Article

Simultaneous Enhancement of iron Deficiency Tolerance and Iron Accumulation in Rice by Combining the Knockdown of OsHRZ Ubiquitin Ligases with the Introduction of Engineered Ferric-chelate Reductase

期刊

RICE
卷 15, 期 1, 页码 -

出版社

SPRINGER
DOI: 10.1186/s12284-022-00598-w

关键词

ferric-chelate reductase; fortification; iron deficiency tolerance; Oryza sativa; ubiquitin ligase

类别

资金

  1. Japan Society for the Promotion of Sciences (JSPS) KAKENHI [JP15H05617, JP18H02115, JP22H02231, JP22H04817]
  2. JST Advanced Low Carbon Technology Research and Development Program (ALCA)

向作者/读者索取更多资源

Iron is an essential micronutrient with low solubility under alkaline conditions. Iron deficiency in calcareous soils affects plant productivity, while iron deficiency anemia is a common problem in humans, especially in Asian and African populations. Transgenic manipulation of genes involved in iron uptake and storage has shown improvements in iron deficiency tolerance and accumulation in plants. This study introduces the simultaneous expression of OsHRZ knockdown and OsIRT1 promoter-Refre1/372 genes, resulting in enhanced iron deficiency tolerance and accumulation in rice plants.
Iron is an essential micronutrient for living organisms, but its solubility is extremely low under alkaline conditions. Plants often suffer from iron deficiency chlorosis in calcareous soils, which consist of approximately 30% of the world's cultivated area, severely limiting plant productivity. Iron deficiency anemia is also a widespread problem in humans, especially in Asian and African people who take up iron mainly from staple foods containing low iron concentrations. Transgenic manipulation of genes involved in plant iron uptake, translocation, and storage has made improvements in enhancing iron deficiency tolerance or iron accumulation in edible parts, but these two properties have been characterized separately. We previously produced transgenic rice lines, with concomitant improvement of iron deficiency tolerance and grain iron accumulation by knocking-down OsHRZ ubiquitin ligases, which negatively regulate iron deficiency response and iron accumulation in rice. In the present report, we aimed to further improve the iron deficiency tolerance and grain iron accumulation of OsHRZ knockdown rice by the simultaneous introduction of the engineered ferric-chelate reductase gene Refre1/372 under the control of the OsIRT1 promoter for further enhancement of iron uptake. We obtained several transgenic rice lines with repressed OsHRZ expression and induced Refre1/372 expression. These lines showed a variable degree of iron deficiency tolerance in calcareous soils, with increased iron accumulation in brown seeds under both iron-deficient and iron-sufficient soil cultures. Selected OsHRZ knockdown plus Refre1/372 lines showed similar or better growth compared with that of singly introduced OsHRZ knockdown or Refre1/372 lines in calcareous soils under both non-submerged and submerged conditions. After submerged calcareous soil cultivation, these OsHRZ knockdown plus Refre1/372 lines accumulated 2.5-4.3 times and 17-23 times more iron concentrations than that of non-transformants in brown rice and straw, respectively, which was comparable or superior to a single OsHRZ knockdown line. Our results indicate that the combined introduction of OsHRZ knockdown and OsIRT1 promoter-Refre1/372 is highly effective in further improving the iron deficiency tolerance without compromising the iron accumulation of the OsHRZ knockdown effects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据