4.5 Article

Attention-based Feature Fusion Generative Adversarial Network for yarn-dyed fabric defect detection

期刊

TEXTILE RESEARCH JOURNAL
卷 93, 期 5-6, 页码 1178-1195

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/00405175221129654

关键词

Yarn-dyed fabric defect detection; unsupervised learning; generative adversarial network; feature pyramid network; attention mechanism

向作者/读者索取更多资源

In this article, an Attention-based Feature Fusion Generative Adversarial Network framework is proposed for the unsupervised defect detection of yarn-dyed fabrics. The framework utilizes a modified Feature Pyramid Network to fuse multi-level information and an attention mechanism to enhance feature representation capabilities. Experimental results demonstrate the effectiveness of the proposed method compared to other methods on public datasets.
Defects on the surface of yarn-dyed fabrics are one of the important factors affecting the quality of fabrics. Defect detection is the core link of quality control. Due to the diversity of yarn-dyed fabric patterns and the scarcity of defect samples, reconstruction-based unsupervised deep learning algorithms have received extensive attention in the field of fabric defect detection. However, most existing deep learning algorithms cannot fully extract shallow, high-frequency and high-level information, which limits their ability to reconstruct yarn-dyed fabric images. In this article, we propose an Attention-based Feature Fusion Generative Adversarial Network framework for unsupervised defect detection of yarn-dyed fabrics. The framework utilizes a modified Feature Pyramid Network to fuse multi-level information and utilizes an attention mechanism to enhance the model's feature representation capabilities. The Attention-based Feature Fusion Generative Adversarial Network consists of an attention fusion generator and a patch-level discriminator. In the attention fusion generator, the Feature Pyramid Network with EfficientNetV2 as the backbone is used as the core building block, and different feature fusion methods are used to avoid the loss of information in the process of network deepening. The attention mechanism is used to enhance the channel and spatial-wise correlation of features, which helps the model to focus on more meaningful information by recalibrating the feature maps. In the discriminator, the patch-level discriminator is used to calculate the similarity between the reconstructed image and the original image from a local perspective, thereby improving the model's attention to texture details. Experimental results on public datasets demonstrate the effectiveness of the proposed method compared to other methods.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据