4.4 Article

Reaction Mechanisms for Chiral-Phosphate-Catalyzed Transformations Involving Cationic Intermediates and Protic Nucleophiles

期刊

SYNLETT
卷 34, 期 10, 页码 1174-1184

出版社

GEORG THIEME VERLAG KG
DOI: 10.1055/a-1957-3872

关键词

organocatalysis; enantioselectivity; chiral phosphoric acids; density functional theory; noncovalent interactions

向作者/读者索取更多资源

Recent strategies for enantioinduction focus on utilizing a chiral catalyst to noncovalently interact with the substrate. Stereoselectivity can be achieved by limiting the number of low energy diastereomeric transition states that the reacting components can adopt. Modern computational methods have been designed to overcome the difficulties associated with accurately modeling these types of interactions.
Recent strategies for enantioinduction often focus on em-ploying a chiral catalyst to noncovalently interact with the substrate. By restricting the number of low energy diastereomeric transition states the reacting components can adopt, stereoselectivity can be achieved. Many of these noncovalent interactions include a significant dispersive component and these types of contacts have historically been difficult to model accurately. Modern computational methods have been de-signed to overcome such limitations. Using our computational work on chiral phosphate catalysis, we discuss the reasons for enantioselectivity in diverse reaction space. 1 Introduction 2 Chiral Phosphate Catalysis 3 Phosphate-Catalyzed Transfer Hydrogenation 4 Phosphate-Catalyzed Aza-Friedel-Crafts Reaction 5 Phosphate-Catalyzed Reactions Involving Allenamides 6 Comprehensive Qualitative Models 7 Chiral Phosphates and Thionium Intermediates 8 Conclusion

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据