4.3 Article

Fluorescence quenching, DFT, NBO, and TD-DFT calculations on 1, 4-bis [2-benzothiazolyl vinyl] benzene (BVB) and meso-tetrakis (4-sulfonatophenyl) porphyrin (TPPS) in the presence of silver nanoparticles

期刊

STRUCTURAL CHEMISTRY
卷 34, 期 4, 页码 1265-1277

出版社

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1007/s11224-022-02081-0

关键词

Silver nanoparticles; Fluorescence quenching; Photo energy transfer; DFT; NBO; TD-DFT

向作者/读者索取更多资源

This study used steady-state fluorescence measurements to investigate the fluorescence quenching of 1, 4-bis [-(2-benzothiazolyl) vinyl benzene (BVB) by sodium salt of meso-tetrakis (4-sulfonatophenyl) porphyrin (TPPS) in the presence and absence of silver nanoparticles (Ag NPs). The results showed that the presence of Ag NPs increased the efficiency of energy transfer (ET). The molecular structures were optimized to understand the mechanism. The experimental and theoretical results were in good agreement.
Steady-state fluorescence measurements were used to examine the fluorescence quenching of 1, 4-bis [-(2-benzothiazolyl) vinyl benzene (BVB) by sodium salt of meso-tetrakis (4-sulfonatophenyl) porphyrin (TPPS) in the presence and absence of silver nanoparticles (Ag NPs). The energy transfer (ET) process's emission intensities and Stern-Volmer constants (K-SV) showed that Ag NP's presence increased ET's efficiency. The molecular structures of TPPS, TPPS, and BVB/TPPS were optimized using the DFT/B3LYP/6-311G (d) technique to elucidate the mechanism. The discovered optimized molecular structure proved that whereas TPPS and BVB/TPPS MSs are not planar because the porphyrin group in TPPS is rotated out by phenyl sodium sulphate, the BVB MS is planer. All of the theoretical BVB results and the acquired experimental optical results were very similar.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据