4.7 Article

Cyanobacterial bloom intensities determine planktonic eukaryote community structure and stability

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 838, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2022.156637

关键词

Eukaryotic plankton community; Cyanobacterial bloom; Co-occurrence networks; Diversity; Stability

资金

  1. Natural Science Foundation of China [51878386, 52000121]
  2. Natural Science Foundation of Shandong Province [ZR2020QE284]

向作者/读者索取更多资源

The intensity of cyanobacterial blooms can have varying effects on eukaryotic plankton communities in freshwater ecosystems, with high intensity blooms leading to decreased diversity and stability. Controlling cyanobacterial blooms at low levels is important to avoid negative impacts on microeukaryotes in lakes or reservoirs.
The intensity of cyanobacterial blooms that predominate in the world's lakes and reservoirs is variable, which may lead to differing effects on the freshwater ecosystem. Planktonic eukaryotes play key roles in the structure and function of freshwater ecosystems; however, little is known about the influence of cyanobacterial blooms on eukaryotic plankton communities and their function. Herein, the dynamics of eukaryotic plankton communities in Hongze Lake, which is the fourth largest freshwater lake in China, with a range of bloom levels occurred, from low to high, were studied to reveal the effect of cyanobacterial blooms' spatial heterogeneity on planktonic eukaryotes. Results showed that the diversity, richness, and evenness of eukaryotic plankton community were not affected by low level of bloom; however, they were decreased obviously by high level of bloom. Metazoa, Ochrophyta, Chloroplastida, Cryptomonadales, and Ciliophora were the main planktonic eukaryotes in this lake. Metazoa relative abundance declined 25.1% and relative abundance of eukaryotic phytoplankton (mainly Ochrophyta, Chloroplastida, and Cryptomonadales) and Ciliophora increased 17.4% and 2.0%, respectively, during the period with low level of bloom; conversely, the site with the high bloom level manifested the opposite changes. The linkage density of planktonic eukaryotic network was 0.188 and 0.138 with low and high level of bloom, respectively, indicating the stability of planktonic eukaryotes was lower when a high level of bloom occurred compared to that of a low bloom level. Our findings indicate that cyanobacterial blooms should be controlled at low level to avoid their obvious negative impact on microeukaryotes in lakes or reservoirs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据