4.7 Article

Associations between repeated measures of urinary phthalate metabolites and biomarkers of oxidative stress in a rural agricultural cohort of children with asthma

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 848, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2022.157493

关键词

Phthalate exposure; Children; Asthma; Oxidative stress; DNA/RNA damage; Lipid peroxidation

资金

  1. National Institute of Environmental Health Sciences (NIEHS) Research to Action Program [NIEHS 5R01ES023510]
  2. University of Washington (UW) Interdisciplinary Center for Exposures, Diseases, Genomics and the Environment [NIEHS P30ES007033]
  3. UW NIEHS [NIEHS T32ES015459]

向作者/读者索取更多资源

Studies show a positive relationship between phthalate exposure and oxidative stress in children with asthma, indicating a potential adverse impact on asthma morbidity. Further research is needed to confirm these findings and better understand the role of phthalates in childhood asthma.
Phthalate exposure is widespread, and studies suggest an adverse relationship with asthma morbidity, including some support for oxidative stress as an underlying pathophysiological mechanism. Urinary phthalate metabolites have been associated with biomarkers of oxidative stress, but data are few in children diagnosed with asthma. We used participant data from the Home Air in Agriculture Pediatric Intervention Trial (HAPI) to examine longitudinal relationships between phthalates and oxidative stress in a cohort of Latino children with asthma residing in an agricultural community. We used linear mixed-effects models to estimate associations between 11 urinary phthalate metabolites (and one summed measure of di-2-ethylhexyl phthalate (DEHP) metabolites, Sigma DEHP) and two urinary biomarkers of oxidative stress: a biomarker of lipid peroxidation via measure of 8-isoprostane and a biomarker of DNA/RNA oxidative damage via combined measure of 8-hydroxydeoxyguanosine (8-OHdG), 8-hydroxyguanosine (8-OHG), and 8-hydroxyguanine. Seventy-nine participants provided 281 observations. In covariate-adjusted models, we observed significant positive relationships between all phthalate metabolites and 8-isoprostane, effect sizes ranging from a 9.3 % (95 % CI: 4.2 %-14.7 %) increase in 8-isoprostane for each 100 % increase (i.e., doubling) of mono-(carboxy-isooctyl) phthalate (MCIOP), to a 21.0 % (95 % CI: 14.3 %-28.2 %) increase in 8-isoprostane for each doubling of mono-n-butyl phthalate (MNBP). For each doubling of mono-(carboxy-isononyl) phthalate (MCINP) and mono-ethyl phthalate (MEP), the DNA/RNA oxidative damage biomarker increased by 6.0 % (95 % CI: 0.2 %-12.2 %) and 6.5 % (95 % CI: 1.4 %-11.9 %), respectively. In conclusion, we provide unique data suggesting phthalate exposure is positively associated with oxidative stress in children with asthma. Our repeat measures provide novel identification of a consistent effect of phthalates on oxidative stress in children with asthma via lipid peroxidation. Confirmation in future studies of children with asthma is needed to enhance understanding of the role of phthalates in childhood asthma morbidity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据