4.7 Article

Solid fuel production from co-hydrothermal carbonization of polyvinyl chloride and corncob: Higher dechlorination efficiency and process water recycling

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 843, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2022.157082

关键词

PVC; Biomass; Co-HTC; Thermochemical process; Hydrochar; Recirculation

资金

  1. National Natural Science Foundation of China [51876106]

向作者/读者索取更多资源

This study investigated the dechlorination reaction during hydrothermal carbonization (HTC) and found that co-HTC could significantly reduce the activation energy for dechlorination. The co-HTC process achieved rapid dechlorination and carbonization, leading to a lower chloride content in the hydrochar. The recycling of process water maintained a high chloride removal efficiency.
The hydrothermal carbonization (HTC) of polyvinyl chloride (PVC) and wet herbal agricultural wastes for solid fuel production remains bleak economics and sustainability because of high chloride residual, wastewater burden and low production capacity. In this study, the HTC dechlorination was investigated using the first-order reaction kinetic analysis. We found that the co-hydrothermal carbonization (co-HTC) of PVC and the typical biomass (corncob) achieved a staggering drop of dechlorination activation energy from 189.95 kJ/mol to 110.04 kJ/mol. The co-HTC process achieved rapid dechlorination and carbonization due to synergistic effect, to suppress the chlorine content in bituminous-coal-like hydrochar less than 0.05%. The process wastewater (process water) from co-HTC was recycled four times to evaluate the reusability and chemical evolution. The organics in co-HTC environment enhanced the carbonization which was confirmed by the improved heating value (30.06 to 32.42 MJ center dot kg-1), hydrochar yield (33.33 % to 36.47 %) and energy recovery efficiency (57.73 % to 68.13 %). The Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) evidenced the process water recirculation maintained high chloride removal. Moreover, the possible formation pathways of two kinds of hydrochars were discussed through the chemical composition of the aqueous phase and the characteristic structures of hydrochar. The co-HTC and process water recycling strategies provide a more promising prospect to convert PVC and biomass wastes into solid fuels.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据